Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5285–5299 | Cite as

Synthesis of an Ni2P catalyst supported on Na-MCM-41 with highly activity for dibenzothiophene HDS under mild conditions

  • Hua Song
  • Fuyong Zhang
  • Nan Jiang
  • Maosen Chen
  • Feng Li
  • Zijin Yan
Article
  • 201 Downloads

Abstract

A novel and simple method to synthesize supported Ni2P/Na(x)-MCM-41 catalysts (where x is the mass fraction of Na-to-MCM-41 in terms of percentage) at a lower reduction temperature by incorporation of Na was described. The catalysts were characterized by H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), N2 adsorption–desorption, CO uptake, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effect of Na on the structure of catalysts and catalytic properties for the dibenzothiophene (DBT) hydrodesulfurization (HDS) was investigated, which confirmed that a suitable amount of Na can promote highly dispersed Ni2P particles. The Na preferentially interacts with phosphate to generate the sodium phosphate and therefore suppresses the formation of stronger P–O–P bonds, which enables the phosphide catalyst to be easily formed at a lower reduction temperature. Compared with conventional phosphate (973–1273 K), the reduction temperature of Ni2P/Na(x)-MCM-41 catalyst was relatively low (773 K). The Ni2P/Na(x)-MCM-41 catalyst with x = 1.0 showed the maximum DBT conversion of 91.6%, which is higher than that of Ni2P/M41 without Na (80.3%).

Keywords

Ni2Na-MCM-41 Sodium Hydrodesulfurization Dibenzothiophene 

Notes

Acknowledgements

The authors acknowledge the financial supports from the National Natural Science Foundation of China (21276048).

Supplementary material

11164_2018_3423_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 42 kb)

References

  1. 1.
    M. Egorova, R. Prins, J. Catal. 255, 417 (2004)CrossRefGoogle Scholar
  2. 2.
    Q.Y. Li, P.Y. Wu, L. Lan, H. Liu, S.F. Ji, Catal. Today 216, 38 (2013)CrossRefGoogle Scholar
  3. 3.
    H.Y. Zhao, S.T. Oyama, H.J. Freund, R. Włodarczyk, M. Sierka, Appl. Catal. B 164, 204 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Li, Z.C. Sun, A.J. Wang, X.N. Yang, Y. Wang, Appl. Catal. A 417, 19 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Tian, X. Li, A. Wang, R. Prins et al., Angew. Chem. Int. Edit. 55, 4030 (2016)CrossRefGoogle Scholar
  6. 6.
    C.P. Jiménez-Gómez, J.A. Cecilia, R. Moreno-Tost et al., ChemCatChem 9, 2881 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Song, F.Y. Zhang, H.L. Song, X.W. Xu, F. Li, Catal. Commun. 69, 59 (2015)CrossRefGoogle Scholar
  8. 8.
    Y.Y. Shu, S.T. Oyama, Carbon 43, 1517 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Loboué, C. Guillot-Deudon, A.F. Popa, A. Lafond, B. Rebours, C. Pichon, T. Cseri, G. Berhault, C. Geantet, Catal. Today 130, 63 (2008)CrossRefGoogle Scholar
  10. 10.
    K.S. Cho, H.R. Seo, Y.K. Lee, Catal. Commun. 12, 470 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Song, M. Dai, H.L. Song, X. Wan, X.W. Xu, Z.S. Jin, J. Mol. Catal. A- Chem. 385, 149 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Song, M. Dai, H.L. Song, X. Wan, X.W. Xu, C.Y. Zhang, H.Y. Wang, Catal. Commun. 43, 151 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Song, M. Dai, H.L. Song, X.X.W. Xu, Appl. Catal. A 462–463, 247 (2013)CrossRefGoogle Scholar
  14. 14.
    A.I. d’Aquino, S.J. Danforth, T.R. Clinkingbeard, B. Ilic, L. Pullan, M.A. Reynolds, B.D. Murray, M.E. Bussell, J. Catal. 335, 204 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Sawada, Y. Kanda, M. Sugioka, M. Uemichi, Catal. Commun. 56, 60 (2014)CrossRefGoogle Scholar
  16. 16.
    H.I. Meléndez-Ortiz, L.A. García-Cerda, Y. Olivares-Maldonado, G. Castruita, J.A. Mercado-Silva, Y.A. Perera-Mercado, Ceram. Int. 38, 6353 (2012)CrossRefGoogle Scholar
  17. 17.
    V. Teixeira da Silva, L.A. Sousa, R.M. Amorimb, L. Andrini, S.J.A. Figueroa, F.G. Requejo, F.C. Vicentini, J. Catal. 279, 88 (2011)CrossRefGoogle Scholar
  18. 18.
    Z.Y. Pan, R.J. Wang, Z.Y. Nie, J.X. Chen, J. Energy Chem. 25, 418 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Wang, P. Clark, S.T. Oyama, J. Catal. 208, 321 (2002)CrossRefGoogle Scholar
  20. 20.
    S.T. Oyama, X. Wang, Y.K. Lee, W.J. Chun, J. Catal. 221, 263 (2004)CrossRefGoogle Scholar
  21. 21.
    S.T. Oyama, X. Wang, Y.K. Lee, K. Bando, F.G. Requejo, J. Catal. 210, 207 (2002)CrossRefGoogle Scholar
  22. 22.
    K.A. Layman, M.E. Bussell, J. Phys. Chem. B 108, 10930 (2004)CrossRefGoogle Scholar
  23. 23.
    I.K. Tamás, V. Zdeněk, G.P. Dilip, R. Ryong, S.K. Hei, J.M.H. Emiel, J. Catal. 253, 119 (2008)CrossRefGoogle Scholar
  24. 24.
    J.N. Kuhn, N. Lakshminarayanan, U.S. Ozkan, J. Mol. Catal. A 282, 9 (2008)CrossRefGoogle Scholar
  25. 25.
    L. Song, S. Zhang, Q. Wei, Catal. Commun. 12, 1157 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Song, M. Dai, Y.T. Guo, Y.J. Zhang, Fuel Proces. Technol. 96, 228 (2012)CrossRefGoogle Scholar
  27. 27.
    P. Liu, J.A. Rodriguez, J. Am. Chem. Soc. 127, 14871 (2005)CrossRefGoogle Scholar
  28. 28.
    H. Song, J. Wang, Z.D. Wang, H.L. Song, F. Li, Z.S. Jin, J. Catal. 311, 257 (2014)CrossRefGoogle Scholar
  29. 29.
    S.T. Oyama, T. Gott, K. Asakura, S. Takakusagic, K. Miyazakib, Y. Koiked, K.K. Bando, J. Catal. 268, 209 (2009)CrossRefGoogle Scholar
  30. 30.
    H. Song, X.W. Xu, M. Dai, H.L. Song, Chem. J. Chin. Univ. 34, 2609 (2013)Google Scholar
  31. 31.
    S.T. Oyama, Y.K. Lee, J. Catal. 258, 393 (2008)CrossRefGoogle Scholar
  32. 32.
    R. Prins, M.E. Bussell, Catal. Lett. 142, 1413 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Provincial Key Laboratory of Oil and Gas Chemical Technology, College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqingChina

Personalised recommendations