Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4503–4518 | Cite as

Facile synthesis of CoNi2S4/graphene nanocomposites as a high-performance electrode for supercapacitors

  • Jingjing Lin
  • Song Yan
  • Ping Liu
  • Xing Chang
  • Lu Yao
  • Hualin Lin
  • Deli Lu
  • Sheng Han


CoNi2S4/graphene nanocomposites were synthesized by a simple solvothermal method and used as supercapacitor electrodes. CoNi2S4 nanoparticles were doped in graphene layers, which is favorable for improving electrochemical performances of the as-prepared materials. The resulting electrochemical performance of CoNi2S4/graphene nanocomposite electrodes possessed pseudocapacitive behavior with high specific capacitance (1621 F g−1 at 0.5 A g–1), good rate capability (76.7% capacitance retention when reaching 10 A g–1) and outstanding cycling stability (no capacitance loss after 2500 charge–discharge cycles at 5 A g–1). In addition, as the positive electrode of an asymmetric supercapacitor, the material also shows a high specific capacitance of 126.6 F g–1 at 0.5 A g–1, good cycle stability with capacitance retention of 87.4% after 5000 cycles and the highest energy density of 39.56 W h kg–1 at the power density of 374.8 W kg–1.


CoNi2S4/graphene supercapacitors High specific capacitance Asymmetric electrode 



This work was supported from the National Natural Science Foundation of China (Project Numbers 51641208 and 21606151), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Numbers LM201680 and LM201559), Shanghai Excellent Technology Leaders Program (Project Number 17XD1424900), Shanghai Leading Talent Program (Project Number 017), Science and Technology Commission of Shanghai Municipality Project (Project Numbers 14520503200 and ZX2016-7). Collaborative Innovation Fund of SIT, XTCX2015-9.

Supplementary material

11164_2018_3400_MOESM1_ESM.docx (907 kb)
Supplementary material 1 (DOCX 906 kb)


  1. 1.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    X. Wei, X. Jiang, J. Wei, S. Gao, Chem. Mater. 28, 445 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Wang, Y. Shao, J. Zhang, M. Anpo, Res. Chem. Intermed. 34, 267 (2008)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, L. Wang, J. Zhang, F. Chen, M. Anpo, Res. Chem. Intermed. 37, 949 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Energ. Environ. Sci. 6, 1623 (2013)CrossRefGoogle Scholar
  6. 6.
    Y. Jiang, X. Cui, L. Zu, Z. Hu, J. Gan, J. Nanosci. Nanotechno. 17, 507 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Winter, R.J. Brodd, Cheminform 35, 4245 (2004)Google Scholar
  8. 8.
    D.P. Dubal, N.R. Chodankar, Z. Caban-Huertas, F. Wolfart, M. Vidotti, R. Holze, C.D. Lokhande, J. Power Sourc. 308, 158 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, A.C.S. Appl, Mater. Inter. 8, 4724 (2016)CrossRefGoogle Scholar
  10. 10.
    B. Dong, X. Zhang, X. Xu, G. Gao, S. Ding, J. Li, B. Li, Carbon 80, 222 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Godillot, P.L. Taberna, B. Daffos, P. Simon, C. Delmas, L. Guerlou-Demourgues, J. Power Sour. 331, 277 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Energ. Environ. Sci. 9, 102 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Miao, C. Shao, X. Li, K. Wang, Y. Liu, J. Mater. Chem. A 4, 4180 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Ma, J. Sheng, C. Ma, R. Wang, J. Liu, Z. Xie, J. Shi, Chem. Eng. J. 304, 587 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Adv. Energy Mater. 1, 356 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Oschatz, S. Boukhalfa, W. Nickel, J.P. Hofmann, C. Fischer, G. Yushin, S. Kaskel, Carbon 113, 283 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Yang, H. Yang, B. Tian, J. Zhang, D. He, Res. Chem. Intermed. 39, 1685 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Li, D. Wu, C. Cheng, J. Wang, F. Zhang, Y. Su, Angew. Chem. 52, 12105 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Li, L. Wang, Y. Liu, J. Lei, J. Zhang, Res. Chem. Intermed. 42, 3979 (2016)CrossRefGoogle Scholar
  20. 20.
    W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, M. Zhu, Carbon 113, 151 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Yan, K. Gan, B. Tian, J. Zhang, L. Wang, D. Lu, Res. Chem. Intermed. 44, 1 (2018)CrossRefGoogle Scholar
  22. 22.
    N. Li, K. Gan, D. Lu, J. Zhang, L. Wang, Res. Chem. Intermed. 44, 1105 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Li, Z. Mei, J. Yu, H. Cheng, Q. Li, Small 13, 1602994 (2017)CrossRefGoogle Scholar
  24. 24.
    L. Bao, T. Li, S. Chen, C. Peng, L. Li, Q. Xu, Y. Chen, E. Ou, W. Xu, Small 13, 1602077 (2017)CrossRefGoogle Scholar
  25. 25.
    Z. Wu, Y. Zhu, X. Ji, J. Mater. Chem. A 2, 14759 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Johnbosco, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, P.M. Johnson, J. Electroanal. Chem. 797, 78 (2017)CrossRefGoogle Scholar
  27. 27.
    Z. Ai, Z. Hu, Y. Liu, M. Yao, ChemPlusChem 81, 322 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Shen, J. Wu, L. Pei, M.T.F. Rodrigues, Z.Q. Zhang, F. Zhang, X. Zhang, P.M. Ajayan, M. Ye, Adv. Energy Mater. 6, 314 (2016)Google Scholar
  29. 29.
    J. Zhao, Z. Li, M. Zhang, A. Meng, Q. Li, J. Power Sour. 332, 355 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Shen, X. Xu, P. Dong, Z. Zhang, R. Baines, J. Ji, Y. Pei, M. Ye, Ceram. Int. 42, 8120 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Liu, J. Xie, C. Fang, G. Cao, T. Zhu, X. Zhao, J. Mater. Chem. 22, 19738 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Tang, J. Shen, N. Li, M. Ye, Ceram. Int. 41, 6203 (2015)CrossRefGoogle Scholar
  33. 33.
    W.S.H. Jr, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  34. 34.
    M. Liu, X. Ma, L. Gan, J. Mater. Chem. A 2, 17107 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Miao, D. Zhu, Y. Zhao, Micropor. Mesopor. Mat. 253, 1 (2017)CrossRefGoogle Scholar
  36. 36.
    K. Kailasam, A. Fischer, G. Zhang, J. Zhang, M. Schwarze, M. Schröder, X. Wang, R. Schomäcker, A. Thomas, Chemsuschem 8, 1404 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Wang, Y. Lin, Y. Su, B. Zhang, C. Li, H. Wang, L. Wang, Electrochim. Acta 225, 263 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Qorbani, N. Naseri, A.Z. Moshfegh, A.C.S. Appl, Mater. Inter. 7, 11172 (1944)CrossRefGoogle Scholar
  39. 39.
    C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Adv. Funct. Mater. 22, 4592 (2012)CrossRefGoogle Scholar
  40. 40.
    J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong, Z. Wang, ChemPlusChem 79, 577 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Mei, T. Yang, C. Xu, Nano Energy 3, 36 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao, J. Qiu, Energ. Environ. Sci. 9, 1299 (2016)CrossRefGoogle Scholar
  43. 43.
    L.G. Beka, X. Li, X. Xia, W. Liu, Diam. Relat. Mater. 73, 169 (2017)CrossRefGoogle Scholar
  44. 44.
    H. Chen, Y. Ai, F. Liu, X. Chang, Y. Xue, Q. Huang, C. Wang, H. Lin, S. Han, Electrochim. Acta 213, 55 (2016)CrossRefGoogle Scholar
  45. 45.
    S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni, D. Yang, J. Mater. Chem. A 5, 12453 (2017)CrossRefGoogle Scholar
  46. 46.
    B. Liu, B. Liu, Q. Wang, X. Wang, Q. Xiang, D. Chen, G. Shen, A.C.S. Appl, Mater. Inter. 5, 10011 (2013)CrossRefGoogle Scholar
  47. 47.
    G. Zhang, X.W. Lou, Adv. Mater. 25, 976 (2013)CrossRefGoogle Scholar
  48. 48.
    R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nano Lett. 12, 2559 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations