Research on Chemical Intermediates

, Volume 44, Issue 6, pp 3773–3786 | Cite as

Fast pyrolysis of waste pepper stem over waste FCC catalyst

  • Myung Lang Yoo
  • Young-Kwon Park
  • Yong Ho Park
  • Sung Hoon Park


Fast pyrolysis of waste pepper stem was investigated using waste FCC catalyst and HY zeolite with a SiO2/Al2O3 ratio of 5.1. The pyrolysis oil obtained from the pyrolysis at 500 °C was analyzed using GC/MS. Oxygenates were converted, in particular when the catalyst dose was high, to furans and aromatics. The contents of low-molecular-mass phenolics and aromatics increased with increasing quantity of acid sites deployed. On the other hand, the content of high-molecular-mass phenolics was increased by catalysis with the biomass:catalyst ratio of 1:1, whereas it was decreased by catalysis with the biomass:catalyst ratio of 1:10. This was explained by the pathway of lignin-to-aromatics conversion: lignin → high-molecular-mass phenolics → low-molecular-mass phenolics → aromatics. Activated waste FCC catalyst showed a little weaker catalytic activity for the conversion of low-molecular-mass phenolics to aromatics than HY, leading to a higher phenolics content and a lower aromatics content. The results of this study indicate that the catalytic pyrolysis of lignin-rich biomass over waste FCC catalyst can be a promising way of recycling waste FCC catalyst for the production of high-value-added chemicals, such as furans, phenolics and aromatics.


Waste FCC catalyst Fast pyrolysis Waste pepper stem Bio-oil 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number 2016R1D1A3A03916423).


  1. 1.
    International Energy Outlook 2014Google Scholar
  2. 2.
    V.I. Sharypov, N.G. Beregovtsova, B.N. Kuznetsov, L. Membrado, V.L. Cebolla, N. Marin, J.V. Weber, J. Anal. Appl. Pyrolysis 67, 325 (2003)CrossRefGoogle Scholar
  3. 3.
    D. Mohan, Energy Fuels 20, 848 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Demirbas, Energy Educ. Sci. Technol. 5, 21 (2000)Google Scholar
  5. 5.
    S. Czernik, A.V. Bridgwater, Energy Fuels 18(2), 590 (2004)CrossRefGoogle Scholar
  6. 6.
    H.J. Park, H.S. Heo, J.K. Jeon, J. Kim, R. Ryoo, K.E. Jeong, Y.K. Park, Appl. Catal. B Environ. 95, 365 (2010)CrossRefGoogle Scholar
  7. 7.
    H.S. Heo, S.G. Kim, K.E. Jeong, J.K. Jeon, S.H. Park, J.M. Kim, S.S. Kim, Y.K. Park, Bioresour. Technol. 102, 3952 (2011)CrossRefGoogle Scholar
  8. 8.
    S.J. Choi, S.H. Park, J.-K. Jeon, I.G. Lee, C. Ryu, D.J. Suh, Y.K. Park, Renewable Energy 54, 105 (2013)CrossRefGoogle Scholar
  9. 9.
    J.W. Kim, S.H. Park, J. Jung, J.K. Jeon, C.H. Ko, K.-E. Jeong, Y.-K. Park, Biores. Technol. 136, 431 (2013)CrossRefGoogle Scholar
  10. 10.
    T.R. Carlson, G.A. Tompsett, W.C. Conner, G.W. Huber, Top. Catal. 52, 241 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.-K. Park, M.L. Yoo, H.W. Lee, S.H. Park, S.-C. Jung, S.-S. Park, S.-C. Kim, Renewable Energy 42, 125 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.-K. Park, M.L. Yoo, S.H. Jin, S.H. Park, Renewable Energy 79, 20 (2015)CrossRefGoogle Scholar
  13. 13.
    S.K. Jeon, J.G. Yang, J.H. Kim, S.S. Lee, J. Korean Ind. Eng. Cham 8, 679 (1997)Google Scholar
  14. 14.
    Y.C. Bak, J.H. Choi, S.H. Oh, J. Korea Chem. Eng. 50(3), 442 (2012)CrossRefGoogle Scholar
  15. 15.
    N.P. Jang, J.W. Park, G. Seo, J. Korea Chem. Eng. 41(6), 694 (2003)Google Scholar
  16. 16.
    M.L. Yoo, Y.H. Park, Y.-K. Park, S.H. Park, Energies 9, 201 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.-K. Park, M.L. Yoo, H.S. Heo, H.W. Lee, S.H. Park, S.-C. Jung, S.-S. Park, S.-G. Seo, Renewable Energy 42, 168 (2012)CrossRefGoogle Scholar
  18. 18.
    J.D. Adjaye, N.N. Bakhshi, Fuel Process. Technol. 45(3), 161 (1995)CrossRefGoogle Scholar
  19. 19.
    P. De Wild, H. Reith, E. Heeres, Biofuels 2, 185 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Gutierrez, R.K. Kaila, M.L. Honkela, R. Slioor, A.O.I. Krause, Catal. Today 147, 239 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Sitthisa, D.E. Resasco, Catal. Lett. 141, 784 (2011)CrossRefGoogle Scholar
  22. 22.
    I.G. Lee, B.R. Jun, H.K. Kang, S.H. Park, S.C. Jung, J.K. Jeon, C.H. Ko, Y.K. Park, Bull. Korean Chem. Soc. 34(8), 2399 (2013)CrossRefGoogle Scholar
  23. 23.
    H.J. Park, K.H. Park, J.K. Jeon, J. Kim, R. Ryoo, K.E. Jeong, S.H. Park, Y.-K. Park, Fuel 97, 379 (2012)CrossRefGoogle Scholar
  24. 24.
    D.J. Mihalcik, C.A. Mullen, A.A. Boateng, J. Anal. Appl. Pyrol. 92, 224 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Myung Lang Yoo
    • 1
    • 2
  • Young-Kwon Park
    • 3
  • Yong Ho Park
    • 1
  • Sung Hoon Park
    • 1
  1. 1.Department of Environmental EngineeringSunchon National UniversitySuncheonKorea
  2. 2.Process Development TeamEGTECH CorporationGwangyangKorea
  3. 3.School of Environmental EngineeringUniversity of SeoulSeoulKorea

Personalised recommendations