Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4179–4194 | Cite as

Synthesis of novel Schiff base benzamides via ring opening of thienylidene azlactones for potential antimicrobial activities

  • Subbulakshmi Narasimha Karanth
  • Narayana Badiadka
  • Sarojini Balladka Kunhanna
  • Kenkere S. Shashidhara
  • Prakash Peralam Yegneswaran


3-Hydrazinyl-3-oxo-1-(thiophen-2-yl)prop-1-en-2-yl]benzamide (4) is identified as a key intermediate for the synthesis of some new 3-[aryl substituted hydrazinyl]-3-oxo-1-(thiophen-2-yl)prop-1-en-2-yl]benzamide (Schiff base compounds) (5a5o). The nucleophilic attack of hydrazine hydrate on 2-phenyl-4-(thiophen-2-ylmethylidene)-1,3-oxazol-5(4H)-one (3) results in the breaking of heterocyclic 1,3-oxazol-5(4H)-one with the formation of compound (4). It contains a new bonding site for further nucleophilic attack of substituted aldehyde, resulting in the formation of an imine. Structures of newly synthesized compounds were established by IR, 1H NMR, 13C NMR, mass spectra and elemental analysis. Newly formed compounds were evaluated for their preliminary in vitro antibacterial and antifungal activity. From the activity studies, it was observed that, among all the derivatives, 5a, 5b, 5d, 5e 5f, 5g, and 5h showed potent antimicrobial activity. The time–kill study report of the most active compound 5e exhibited 100% growth inhibition of Candida albicans at 2 h and Pseudomonas aeroginosa at 4 h. From the in silico molecular docking studies, it was observed that compounds 5k and 5f best fit into the receptors, methionine tRNA synthase from Escherichia coli and glucosamine-6-phosphate enzymes from E. coli, respectively. The compound 5e also showed moderate binding capacity to the respective targets.


3-Oxo-1-(thiophen-2-yl)prop-1-en-2-yl]benzamide Antibacterial activity Antifungal activity Time–kill study Molecular docking 



SNK gratefully acknowledges the Manipal Institute of Technology, Manipal University, Manipal and SAIF Punjab university, Chandigarh for obtaining the NMR and Mass spectral data.

Supplementary material

11164_2018_3362_MOESM1_ESM.doc (148.2 mb)
Supplementary material 1 (DOC 151738 kb)


  1. 1.
    H. Schiff, Justus Leibigs Ann. Chem. 131, 118 (1864)CrossRefGoogle Scholar
  2. 2.
    A. Cukurovali, B. Yilmaz, S. Gur, C. Kazaz, Eur. J. Med. Chem. 41, 201 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Capila, C. Serena, F. Javier, T. Ortoneda, J. Guarro, Antimicrob. Agents Chemother. 47, 3976 (2003)CrossRefGoogle Scholar
  4. 4.
    S. Bawa, S. Kumar, S. Drabu, R. Kumar, J. Pharm. Bioallied Sci. 1, 27 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Minami, H. Toqashi, M. Sano, I. Saito, A. Nomura, M. Yoshioka, H. Saito, Hokkaido lqaku Zasshi 60, 856 (1985)Google Scholar
  6. 6.
    Y.L. Janin, Bioorg. Med. Chem. 15, 2479 (2007)CrossRefGoogle Scholar
  7. 7.
    L.C. Toit, V. Pillay, M.P. Danckwerts, Respir. Res. 7, 118 (2006)CrossRefGoogle Scholar
  8. 8.
    A.R. Todeschini, A.L.P. De Miranda, K.C.M. Da Silva, S.C. Parrini, E.J. Barreiero, Eur. J. Med. Chem. 33, 189 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Sarangapani, V.M. Reddy, Indian J. Pharm. Sci. 59, 105 (1997)Google Scholar
  10. 10.
    S.K. Sridar, A. Ramesh, Biol. Pharm. Bull. 24, 1149 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Gokce, S. Utku, E. Kupeli, Eur. J. Med. Chem. 44, 3760 (2009)CrossRefGoogle Scholar
  12. 12.
    M.G. Mamolo, V. Falagiani, D. Zampieri, U. Vio, E. Banfi, G. Scialino, Farmaco Sci. 58, 631 (2003)CrossRefGoogle Scholar
  13. 13.
    K.J. Prathap, M. Himaja, S.V. Mali, A. Ranjitha, J. Pharm. Res. 3, 2460 (2010)Google Scholar
  14. 14.
    A.L. Cates, S.M. Rasheed, Pharm. Res. 6, 271 (1984)CrossRefGoogle Scholar
  15. 15.
    A. Patti, S. Pedotti, F.P. Ballistreri, G. Frazzetto, Molecules 14(11), 4312 (2009)CrossRefGoogle Scholar
  16. 16.
    O. Pouralimardan, A.C. Chamayou, C. Janiak, H.H. Monfared, InorganicaChim. Acta 360, 1599 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Bezas, L. Zervas, J. Am. Chem. Soc. 83, 719 (1961)CrossRefGoogle Scholar
  18. 18.
    A.A. Jarrahpour, M. Motamedifar, K. Pakshir, N. Hadi, M. Zarei, Molecules 9, 815 (2004)CrossRefGoogle Scholar
  19. 19.
    V. Alexander, Chem. Rev. 95, 273 (1995)CrossRefGoogle Scholar
  20. 20.
    B. Narayana, K.K. Vijaya Raj, B.V. Ashalatha, N. Suchetha Kumari, B.K. Sarojini, Eur. J. Med. Chem. 39, 867 (2004)CrossRefGoogle Scholar
  21. 21.
    I. Oren, E. Sener, C. Ertas, O. Arpaci, I. Yelcin, N. Altanlar, Turk. J. Chem. 28, 411 (2004)Google Scholar
  22. 22.
    M. Sudheer, K.K. Srinivasan, B. Divyashree, Elixir Pharm. 54, 12315 (2013)Google Scholar
  23. 23.
    L. Shi, H.M. Ge, S.H. Tan, H.Q. Li, Y.C. Song, H.L. Zhu, Eur. J. Med. Chem. 42, 558 (2007)CrossRefGoogle Scholar
  24. 24.
    S.N. Pandeya, D. Sriam, G. Nath, E. de Clercq, Farmaco 54, 624 (1999)CrossRefGoogle Scholar
  25. 25.
    M.J. Hearn, M.H. Cynamon, J. Antimicrob. Chemother. 53, 185 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Panneerselvam, R.R. Nair, G. Vijayalakshmi, E.H. Subramanian, S.K. Sridhar, Eur. J. Med. Chem. 40, 225 (2005)CrossRefGoogle Scholar
  27. 27.
    M.S. Karthikeyan, D.J. Prasad, B. Poojary, K.S. Bhat, B.S. Holla, N.S. Kumari, Bioorg. Med. Chem. 14, 7482 (2006)CrossRefGoogle Scholar
  28. 28.
    B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel’s text book of practical organic chemistry, 5th edn. (Prentice Hall, Upper Saddle River, 1989), p. 1155Google Scholar
  29. 29.
    K.N. Subbulakshmi, B. Narayana, H.S. Yathirajan, J.P. Jasinki, R.S. Rathore, C. Glidewell, Acta Crystallogr. E72, 1099 (2016)Google Scholar
  30. 30.
    A. Kumar, K.N. Subbulakshmi, B. Narayana, B.K. Sarojini, L.K. Kotai, S. Anthal, R. Kant, Eur. Chem. Bull. 5(8), 345 (2016)Google Scholar
  31. 31.
    D.K. Sharma, K.N. Subbulakshmi, B. Narayana, B.K. Sarojini, S. Anthal, R. Kant, IUCrData 1, x161276 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Venugopal, S. Kumar, M. Isa, M. Bose, Indian J. Med. Microbiol. 25, 115 (2007)CrossRefGoogle Scholar
  33. 33.
    G.A. Pankuch, M.R. Jacobs, P.C. Appelbaum, Antimicrob. Agents Chemother. 38, 2065 (1994)CrossRefGoogle Scholar
  34. 34.
    D.W. Ritchie, Curr. Protein Pept. Sci. 9(1), 1 (2008)CrossRefGoogle Scholar
  35. 35.
    B.K. Sarijini, B.G. Krishna, C.G. Darshanraj, B.R. Barath, H. Manjunatha, Eur. J. Med. Chem. 45, 3490 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Subbulakshmi Narasimha Karanth
    • 1
    • 2
  • Narayana Badiadka
    • 1
  • Sarojini Balladka Kunhanna
    • 3
  • Kenkere S. Shashidhara
    • 4
  • Prakash Peralam Yegneswaran
    • 5
  1. 1.Department of Studies in ChemistryMangalore UniversityMangalagangothriIndia
  2. 2.Department of ChemistryShree Madhwa Vadiraja Institute of Technology and Management (VTU Belgaum)UdupiIndia
  3. 3.Department of Industrial ChemistryMangalore UniversityMangalagangothriIndia
  4. 4.Department of Genetics and Plant Breeding, College of AgricultureUniversity of Agricultural Sciences (Bangalore)Karekere, HassanIndia
  5. 5.Department of Microbiology, Kasturba Medical CollegeManipal UniversityManipalIndia

Personalised recommendations