Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3629–3640 | Cite as

Effect of surface modification temperature on the hydrodesulfurization performance of Ni2P/MCM-41 catalyst

  • Hua Song
  • Qi Yu
  • Nan Jiang
  • Zijin Yan
  • Tianzhen Hao
  • Zidong Wang
Article
  • 224 Downloads

Abstract

Highly active MCM-41-supported nickel phosphide catalysts for hydrodesulfurization (HDS) were synthesized by surface modification, in which the surface of supported Ni2P catalysts were directly modified at different temperatures by air instead of being passivated by an O2/N2 mixture. In addition, the prepared catalysts need not be activated under high temperature in H2 flow prior to the HDS reaction as in the conventional method. X-ray diffraction, X-ray photoelectron spectroscopy, N2-adsorption specific surface area measurements, CO chemisorption and transmission electron microscope were used to characterize the resulting catalysts. The effect of modification temperature on HDS performance of the catalysts was investigated. The results showed that the surface modification could promote the formation of smaller and more uniform Ni2P particles and the exposure of more Ni atoms. The modification method is simple and energy-saving, and the catalyst modified by air at 150 °C presents a dibenzothipohene conversion of 95.4%, which is 6.8% higher than that of a catalyst passivated by O2/N2 mixture followed by high-temperature and H2 pretreatments.

Keywords

Ni2Hydrodesulfurization Surface modification MCM-41 

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (21276048), the Education Department of Heilongjiang Province (12541060) and the Graduate Innovation Project of Northeast Petroleum University, China (No. YJSCX2016-019NEPU).

References

  1. 1.
    S.T. Oyama, T. Gott, H. Zhao, Y.K. Lee, Catal. Today 143, 94 (2009)CrossRefGoogle Scholar
  2. 2.
    S.T. Oyama, J. Catal. 216, 343 (2003)CrossRefGoogle Scholar
  3. 3.
    G.N. Yun, Y.K. Lee, Appl. Catal. B 150–151, 647 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Song, J. Wang, Z.D. Wang, H.L. Song, F. Li, Z.S. Jin, J. Catal. 311, 257 (2014)CrossRefGoogle Scholar
  5. 5.
    W. Wang, X. Li, Z. Sun, A. Wang, Y. Liu, Y. Chen, X. Duan, Appl. Catal. A 509, 45 (2016)CrossRefGoogle Scholar
  6. 6.
    V. Teixeira da Silva, L.A. Sousa, R.M. Amorimb, L. Andrini, S.J.A. Figueroa, F.G. Requejo, F.C. Vicentini, J. Catal. 279, 88 (2011)CrossRefGoogle Scholar
  7. 7.
    L. Yang, X. Li, A.J. Wang, R. Prins, Y. Wang, Y.Y. Chen, X.P. Duan, J. Catal. 317, 144 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Prins, M. Bussell, Catal. Lett. 142, 1413 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Wang, L. Ruan, Y. Teng, X. Li, M. Lu, J. Ren, Y. Wang, Y. Hu, J. Catal. 229, 314 (2005)CrossRefGoogle Scholar
  10. 10.
    X.P. Duan, Y. Teng, A.J. Wang, V.M. Kogan, X. Li, Y. Wang, J. Catal. 261, 232 (2009)CrossRefGoogle Scholar
  11. 11.
    H.I. Meléndez-Ortiz, L.A. García-Cerda, Y. Olivares-Maldonado, G. Castruita, J.A. Mercado-Silva, Y.A. Perera-Mercado, Ceram. Int. 38, 6353 (2012)CrossRefGoogle Scholar
  12. 12.
    J.A. Cecilia, A. Infantes-Molina, E. Rodríguez-Castellón, A. Jiménez-López, J. Catal. 263, 4 (2009)CrossRefGoogle Scholar
  13. 13.
    S.T. Oyama, X. Wang, Y.K. Lee, W.J. Chun, J. Catal. 221, 263 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Chen, Y. Chen, Q. Yang, K. Li, C. Yao, Catal. Commun. 11, 571 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Song, S. Zhang, Q. Wei, Catal. Commun. 12, 1157 (2011)CrossRefGoogle Scholar
  16. 16.
    A.I. d’Aquino, S.J. Danforth, T.R. Clinkingbeard, B. Ilic, L. Pullan, M.A. Reynolds, B.D. Murray, M.E. Bussell, J. Catal. 335, 204 (2016)CrossRefGoogle Scholar
  17. 17.
    S.J. Sawhill, K.A. Layman, D.R.V. Wyk, M.H. Engelhard, C. Wang, M.E. Bussell, J. Catal. 231, 300 (2005)CrossRefGoogle Scholar
  18. 18.
    J.N. Kuhn, N. Lakshminarayanan, U.S. Ozkan, J. Mol. Catal. A 282, 9 (2008)CrossRefGoogle Scholar
  19. 19.
    Q. Guan, X. Cheng, R. Li, W. Li, J. Catal. 299, 1 (2013)CrossRefGoogle Scholar
  20. 20.
    I.I. Abu, K.J. Smith, J. Catal. 241, 356 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Sutthiumporn, S. Kawi, Int. J. Hydrogen Energ. 36, 14435 (2011)CrossRefGoogle Scholar
  22. 22.
    J.A. Rodriguez, J.Y. Kim, J.C. Hanson, S.J. Sawhill, M.E. Bussell, J. Phys. Chem. B 107, 6276 (2003)CrossRefGoogle Scholar
  23. 23.
    R. Li, Q.X. Guan, R.C. Wei, S.Q. Yang, Z. Shu, Y. Dong, J. Chen, W. Li, J. Phys. Chem. C 119, 2557 (2015)CrossRefGoogle Scholar
  24. 24.
    S.T. Oyama, X. Wang, Y.K. Lee, K. Bando, F.G. Requejo, J. Catal. 210, 207 (2002)CrossRefGoogle Scholar
  25. 25.
    S.T. Oyama, Y.K. Lee, J. Catal. 258, 395 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqingChina
  2. 2.Hebei Fine Technology CoCangzhouChina

Personalised recommendations