Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3597–3611 | Cite as

Electro-chemical oxidation of gaseous elemental mercury via a gas diffusion reactor with Fenton-like catalyst

  • Xiao Zhou
  • Limei Cao
  • Ji Yang


An electrode in situ catalytic oxidation of elemental mercury (Hg0) in flue gas using Fenton-like catalysts in a self-made reactor was proposed. The catalysts were prepared by a hydrothermal method, and the catalysts were loaded on the electrode and could improve the removal efficiency of Hg0. About 240 μg/m3 of elemental Hg0 could be removed in 40 min. The morphology and structure information of the prepared catalysts were characterized by SEM, EDS, XRD, SEM, XPS and so on. The effects of operation parameters (voltage, inlet flow, electrolyte concentration, initial concentration of Hg0, pH of solution) were investigated. The above results showed the strong oxidative effect of hydroxyl radicals (·OH), which was produced by the catalysts playing a dominative role during Hg0 removal reactions.

Graphical Abstract


Gaseous elemental mercury Electro-chemical oxidation Gas diffusion reactor Hydroxyl radicals (·OH) 



This research is based upon work supported by the National Natural Science Foundation of China (Project No. 21307032) and “the Fundamental Research Funds for the Central Universities.” Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the supporting organizations.


  1. 1.
    S.W. Sun, S.C. Kang, J. Huang, C.D. Li, J.M. Guo, Q.G. Zhang, X.J. Sun, J. Environ. Sci. 44, 213 (2016)CrossRefGoogle Scholar
  2. 2.
    U.S, Mercury Study Report to Congress, EPA, 1997Google Scholar
  3. 3.
    D.G. Streets, Z. Lu, L. Levin, Sci. Total Environ. 615, 131 (2017)CrossRefGoogle Scholar
  4. 4.
    L.L. Xing, Y.L. Xu, Q. Zhong, Energy Fuels 26, 4903 (2012)CrossRefGoogle Scholar
  5. 5.
    J.F. Li, N.Q. Yan, Z. Qu, S.H. Qiao, S.J. Yang, Y.F. Guo, P. Liu, J.P. Jia, Environ. Sci. Technol. 44, 426 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Fang, C.P. Cen, D.S. Chen, Chin. J. Chem. Eng. 18, 231 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Wang, J.H. Gao, Y.Y. Wu, CIESC J. 61, 3251 (2010)Google Scholar
  8. 8.
    X.M. Dong, K. Wang, C.J. Zhao, J. Alloys Compd. 586, 745 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Du, L.B. Yin, Y.Q. Zhuo, CIESC J. 65, 4414 (2014)Google Scholar
  10. 10.
    J.H. Pavlish, L.L. Hamre, Y. Zhuang, Fuel 89, 838 (2010)CrossRefGoogle Scholar
  11. 11.
    M.L. Hui, L. Zhang, Z.G. Wang, J. Environ. Sci. China 8, 2241 (2015)Google Scholar
  12. 12.
    M.L. Hui, L. Zhang, S.X. Wang, J. Environ. Sci. China 37, 11 (2017)Google Scholar
  13. 13.
    Y. Jiang, China Environ. Sci. 5, 631 (2006)Google Scholar
  14. 14.
    National Resources Defense Council, Summary of Recent Mercury Emission Limits for Power Plants in the United States and China. April 2012Google Scholar
  15. 15.
    H.C. Zeng, F. Jin, J. Guo, Fuel 83, 143 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Sjostrom, M. Durham, C.J. Bustard, Fuel 89, 1320 (2010)CrossRefGoogle Scholar
  17. 17.
    M.M. Shahrestani, A. Rahimi, M. Momeni, Chem. Eng. Technol. 40, 1149 (2017)CrossRefGoogle Scholar
  18. 18.
    Q. Wan, L. Duan, K.B. He, Chem. Eng. J. 170, 512 (2011)CrossRefGoogle Scholar
  19. 19.
    Y.F. Guo, N.Q. Yan, S.J. Yang, P. Liu, J. Wang, Z. Qu, J.P. Jia, J. Hazard. Mater. 213–214, 62 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.X. Liu, J.F. Pan, Q. Wang, AIChE J. 60, 2275 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Chen, G.H. Wang, W.B. Li, D. Wan, Q. Hu, L.L. Lu, Chin. Chem. Lett. 25, 1455 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.F. Fang, A.P. Deng, Y.P. Huang, Chin. Chem. Lett. 20, 1235 (2009)CrossRefGoogle Scholar
  23. 23.
    Y.P. Zhao, J.Y. Hu, H.B. Chen, J. Photochem. Photobiol. A 212, 94 (2010)CrossRefGoogle Scholar
  24. 24.
    J.M. Peralta-Hernández, J. Manríquez, Y. Meas-Vong, J. Hazard. Mater. 147, 588 (2007)CrossRefGoogle Scholar
  25. 25.
    J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, Appl. Catal. B 75, 312 (2007)CrossRefGoogle Scholar
  26. 26.
    F.M. Zhan, C.T. Li, G.M. Zeng, Chem. Eng. J. 232, 81 (2013)CrossRefGoogle Scholar
  27. 27.
    Z. Frontistis, C. Drosou, K. Tyrovola, Ind. Eng. Chem. Res. 51, 16552 (2017)CrossRefGoogle Scholar
  28. 28.
    A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution (M. Dekker, New York, 1985)Google Scholar
  29. 29.
    F. Ji, C.L. Li, J.H. Zhang, Desalination 269, 284 (2011)CrossRefGoogle Scholar
  30. 30.
    R.B. Valim, R.M. Reis, P.S. Castro, Carbon 61, 236 (2013)CrossRefGoogle Scholar
  31. 31.
    P. Verma, T. Watanabe, Y. Honda, Bioresour. Technol. 102, 3941 (2011)CrossRefGoogle Scholar
  32. 32.
    C.S. Zhou, L.S. Sun, A.C. Zhang, Chemosphere 125, 16 (2015)CrossRefGoogle Scholar
  33. 33.
    C.S. Hu, G. Wang, C.F. Wu, Environ. Sci. 24, 106 (2003)Google Scholar
  34. 34.
    P.P. Jin, R. Chang, D.Q. Liu, J. Environ. Chem. Eng. 2, 1040 (2014)CrossRefGoogle Scholar
  35. 35.
    J.M. Chen, Y.J. Xia, Q.Z. Dai, Electrochim. Acta 165, 277 (2015)CrossRefGoogle Scholar
  36. 36.
    Y.X. Liu, Y. Wang, Q. Wang, J. Hazard. Mater. 292, 164 (2015)CrossRefGoogle Scholar
  37. 37.
    R.T. Guo, W.G. Pan, X.B. Zhang, Fuel 90, 3295 (2011)CrossRefGoogle Scholar
  38. 38.
    Y.X. Liu, J. Zhang, Y.S. Yin, Chem. Eng. J. 249, 72 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Wang, D.Z. Sun, Z.Y. Bian, J. Hazard. Mater. 180, 710 (2010)CrossRefGoogle Scholar
  40. 40.
    S.W. Tang, Y. Pan, Y. Wang, Ann. Surg. Oncol. 22, 630 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical ProcessEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations