Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3581–3595 | Cite as

A facile and green method for the synthesis of hierarchical ZSM-5 zeolite aggregates from rice husk ash

  • Changquan Zhang
  • Suqin Li
  • Shanci Bao


Hierarchical ZSM-5 zeolite has been successfully synthesized from rice husk ash by a facile and solvent-free method. The obtained samples were characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, magic angle spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, ultraviolet raman spectroscopy, thermogravimetric analysis–differential scanning calorimetry, Brunauer–Emmett–Teller (BET) analysis and temperature-programmed desorption of ammonia. The influences of synthesis time on ZSM-5 crystal growth and ZSM-5 zeolite properties were evaluated. The results suggested that the ZSM-5 synthesis process was solid-phase conversion and the crystallization was accomplished within 72 h at 150 °C. The Si, Al and Fe are tetrahedral coordinated and minute quantities of non-framework octahedral coordinated aluminium exist in synthetic ZSM-5, and it has weak and strong acid sites. The resultant ZSM-5 aggregates exhibited well-defined crystallinity and porosity, and possessed micro-/mesoporous structures. The BET surface area of the synthetic ZSM-5 zeolite was 308.41 m2/g, slightly less than that synthesized from a hydrothermal approach (320.69 m2/g). Moreover, this hierarchically porous ZSM-5 zeolite show a high-hierarchy factor up to 0.18. The proposed synthetic route in this work provides novel green alternative for the synthesis of hierarchical ZSM-5 zeolite from rice husk ash.


ZSM-5 zeolite Solvent-free method Rice husk ash Hierarchically porous 


  1. 1.
    A. Corma, Chem. Rev. 95, 559 (1995)CrossRefGoogle Scholar
  2. 2.
    M.V. Parfenov, S.E. Malykhin, L.V. Pirutko, A.S. Kharitonov, E.V. Starokon, Res. Chem. Intermed. 41, 8735 (2015)CrossRefGoogle Scholar
  3. 3.
    M.E. Davis, Nature 417, 813 (2002)CrossRefGoogle Scholar
  4. 4.
    C.S. Cundy, P.A. Cox, Chem. Rev. 103, 663 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Saeidi, M. Hamidzadeh, Res. Chem. Intermed. 43, 2143 (2017)CrossRefGoogle Scholar
  6. 6.
    Z. Song, Q. Zhang, P. Ning, X. Liu, J. Zhang, Y. Wang, L. Xu, Z. Huang, Res. Chem. Intermed. 42, 7429 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Ma, H. Qu, J. Zhang, Q. Tang, S. Zhang, Q. Zhong, Res. Chem. Intermed. 39, 4109 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Rezaei, P. Webley, Sep. Purif. Technol. 70, 243 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Egeblad, C.H. Christensen, M. Kustova, C.H. Christensen, Chem. Mater. 20, 946 (2008)CrossRefGoogle Scholar
  10. 10.
    H.X. Tao, H. Yang, X.H. Liu, J.W. Ren, Y.Q. Wang, G.Z. Lu, Chem. Eng. J. 225, 686 (2013)CrossRefGoogle Scholar
  11. 11.
    H.B. Zhang, Y.C. Ma, K.S. Song, Y.H. Zhang, Y. Tang, J. Catal. 302, 115 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.M. Jia, J.W. Wang, K. Zhang, W. Feng, S.B. Liu, C.M. Ding, P. Liu, Microporous Mesoporous Mater. 247, 103 (2017)CrossRefGoogle Scholar
  13. 13.
    J.J. Ding, H.Y. Liu, P. Yuan, G. Shi, X.J. Bao, Chem. Cat. Chem. 5, 2258 (2013)Google Scholar
  14. 14.
    Z.J. Hu, H.B. Zhang, L. Wang, H.X. Zhang, Y.H. Zhang, H.L. Xu, W. Shen, Y. Tang, Catal. Sci. Technol. 4, 2891 (2014)CrossRefGoogle Scholar
  15. 15.
    J.C. Groen, J.A. Moulijn, J. Perez-Ramirez, J. Mater. Chem. 16, 2121 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Perez-Ramirez, S. Abello, A. Bonilla, J.C. Groen, Adv. Funct. Mater. 19, 164 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Wang, T.J. Pinnavaia, Angew. Chem. Int. Ed. 45, 7603 (2006)CrossRefGoogle Scholar
  18. 18.
    F.S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D. Su, R. Schlogl, T. Yokoi, T. Tatsumi, Angew. Chem. Int. Ed. 45, 3090 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Zhang, S.A. Davis, S. Mann, Chem. Mater. 14, 1369 (2002)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, W. Zhang, Z. Liu, S. Xu, Y. Wang, Z. Xie, X. Han, X. Bao, J. Phys. Chem. C 112, 15375 (2008)CrossRefGoogle Scholar
  21. 21.
    X. Meng, F.S. Xiao, Chem. Rev. 114, 1521 (2014)CrossRefGoogle Scholar
  22. 22.
    Q. Wu, X. Liu, L. Zhu, L. Ding, P. Gao, X. Wang, S. Pan, C. Bian, X. Meng, J. Xu, F. Deng, S. Maurer, U. Muller, F.S. Xiao, J. Am. Chem. Soc. 137, 1052 (2015)CrossRefGoogle Scholar
  23. 23.
    P. Zhang, L. Wang, L. Ren, L. Zhu, Q. Sun, J. Zhang, X. Meng, F.S. Xiao, J. Mater. Chem. 21, 12026 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, F.S. Xiao, Angew. Chem. Int. Ed. Engl. 52, 9172 (2013)CrossRefGoogle Scholar
  25. 25.
    Q. Wu, X. Wang, G. Qi, Q. Guo, S. Pan, X. Meng, J. Xu, F. Deng, F. Fan, Z. Feng, C. Li, S. Maurer, U. Muller, F.S. Xiao, J. Am. Chem. Soc. 136, 4019 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Ren, Q. Wu, C. Yang, L. Zhu, C. Li, P. Zhang, H. Zhang, X. Meng, F.S. Xiao, J. Am. Chem. Soc. 134, 15173 (2012)CrossRefGoogle Scholar
  27. 27.
    S.D. Nagrale, Int. J. Eng. Res. Appl. 2, 1 (2012)Google Scholar
  28. 28.
    E. Kamseu, L.M. Beleuk à Moungam, M. Cannio, N. Billong, D. Chaysuwan, U. Chinje Melo, C. Leonelli, J. Clean. Prod. 142, 3050 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Chandrasekhar, K.G. Satyanarayana, P.N. Pramada, P. Raghavan, T.N. Gupta, J. Mater. Sci. 38, 3159 (2003)CrossRefGoogle Scholar
  30. 30.
    K. Kordatos, S. Gavela, A. Ntziouni, K.N. Pistiolas, A. Kyritsi, V. Kasselouri-Rigopoulou, Microporous Mesoporous Mater. 115, 189 (2008)CrossRefGoogle Scholar
  31. 31.
    M.K. Naskar, D. Kundu, M. Chatterjee, J. Am. Ceram. Soc. 95, 925 (2012)CrossRefGoogle Scholar
  32. 32.
    K. Kordatos, A. Ntziouni, L. Iliadis, V. Kasselouri-Rigopoulou, J. Mater. Cycles Waste 15, 571 (2013)CrossRefGoogle Scholar
  33. 33.
    K.P. Dey, S. Ghosh, M.K. Naskar, Ceram. Int. 39, 2153 (2013)CrossRefGoogle Scholar
  34. 34.
    Z.G.L.V. Sari, H. Younesi, H. Kazemian, Appl. Nanosci. 5, 737 (2015)CrossRefGoogle Scholar
  35. 35.
    W. Luo, X.Y. Yang, Z.R. Wang, W.F. Huang, J.Y. Chen, W. Jiang, L.J. Wang, X.W. Cheng, Y.H. Deng, D.Y. Zhao, Microporous Mesoporous Mater. 243, 112 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Muller, W. Gessner, H.J. Behrens, G. Scheler, Chem. Phys. Lett. 79, 59 (1981)CrossRefGoogle Scholar
  37. 37.
    D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodriguez, A. Peral, J. Mater. Chem. 18, 4210 (2008)CrossRefGoogle Scholar
  38. 38.
    S.D. Kim, S.H. Noh, K.H. Seong, W.J. Kim, Microporous Mesoporous Mater. 72, 185 (2004)CrossRefGoogle Scholar
  39. 39.
    T.L. Barr, Zeolites 10, 760 (1990)CrossRefGoogle Scholar
  40. 40.
    W. Choopun, S. Jitkarnka, J. Clean. Prod. 135, 368 (2017)CrossRefGoogle Scholar
  41. 41.
    X.Y. Li, Y. Jiang, X.Q. Liu, L.Y. Shi, D.Y. Zhang, L.B. Sun, ACS Sustain. Chem. Eng. 5, 6124 (2017)CrossRefGoogle Scholar
  42. 42.
    Y. Yu, G. Xiong, C. Li, F.S. Xiao, Microporous Mesoporous Mater. 46, 23 (2001)CrossRefGoogle Scholar
  43. 43.
    Q. Li, B. Mihailova, D. Creaser, J. Sterte, Microporous Mesoporous Mater. 43, 51 (2001)CrossRefGoogle Scholar
  44. 44.
    P.K. Dutta, K.M. Rao, J.Y. Park, J. Phys. Chem. 95, 6654 (1991)CrossRefGoogle Scholar
  45. 45.
    F. Fan, Z. Feng, C. Li, Acc. Chem. Res. 43, 378 (2010)CrossRefGoogle Scholar
  46. 46.
    Y.Y. Yue, H.Y. Liu, P. Yuan, T.S. Li, C.Z. Yu, H. Bi, X.J. Bao, J. Catal. 319, 200 (2014)CrossRefGoogle Scholar
  47. 47.
    J. Perez-Ramirez, D. Verboekend, A. Bonilla, S. Abello, Adv. Funct. Mater. 19, 3972 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingHaidian District, BeijingChina

Personalised recommendations