Skip to main content
Log in

Aqueous-based bromination of graphene by electrophilic substitution reaction: a defect-free approach for graphene functionalization

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A simple and effective approach for covalent bromination of reduced graphene oxide (RGO) using N-bromosuccinimide (NBS) in aqueous solution is reported. We postulate that this was achieved by using sulfuric acid to decompose NBS and facilitate the formation of bromine cations, which in turn acted as electrophilic reagents and covalently bonded to the defect sites (mostly sp2C–H) graphene sheets via electrophilic substitution reaction. The bonding situation and the content of bromine in the obtained brominated RGO (RGO-Br) were characterized using FTIR, XPS, EDS, and TGA techniques. The structure and morphology changes of the graphene sheets were also characterized by SEM, TEM, AFM, and Raman. The results show that the RGO sheets were functionalized with a high bromine content (~ 7.28 at%) and without further damaging the conjugated structure. Considering that C–Br functional groups can be further modified by a variety of organic functional groups, RGO-Br could be used as a promising intermediate in the synthesis of other functional graphene materials for various potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)

    Article  CAS  Google Scholar 

  2. G. Qi, W. Zhang, Y. Dai, Res. Chem. Intermed. 41, 1 (2013)

    CAS  Google Scholar 

  3. S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, A. Abdala, Sen. Actuat. B Chem. 218, 160 (2015)

    Article  CAS  Google Scholar 

  4. M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Chem. Mater. 27, 2100 (2015)

    Article  CAS  Google Scholar 

  5. G.T. Wu, X.L. Wei, Z.Y. Zhang, Q. Chen, L.M. Peng, Adv. Funct. Mater. 25, 5972 (2015)

    Article  CAS  Google Scholar 

  6. S.P. Economopoulos, G. Rotas, Y. Miyata, H. Shinohara, N. Tagmatarchis, ACS Nano 4, 7499 (2010)

    Article  CAS  Google Scholar 

  7. A.J. Wang, W. Yu, Z.G. Xiao, Y.L. Song, L.L. Long, M.P. Cifuentes, M.G. Humphrey, C. Zhang, Nano Res. 8, 870 (2015)

    Article  CAS  Google Scholar 

  8. G. Gao, D. Liu, S. Tang, C. Huang, M. He, Y. Guo, X. Sun, B. Gao, Sci. Rep. 6, 20034 (2016)

    Article  CAS  Google Scholar 

  9. I.Y. Jeon, D.S. Yu, S.Y. Bae, H.J. Choi, D.W. Chang, L.M. Dai, J.B. Baek, Chem. Mater. 23, 3987 (2011)

    Article  CAS  Google Scholar 

  10. F. Karlicky, R. Zboril, M. Otyepka, J. Chem. Phys. 137, 034709 (2012)

    Article  Google Scholar 

  11. J.F. Friedrich, G. Hidde, A. Lippitz, W.E.S. Unger, Plasma Chem. Plasma 34, 621 (2014)

    Article  CAS  Google Scholar 

  12. Y.J. Yao, J. Gao, F. Bao, S.F. Jiang, X. Zhang, R. Ma, RSC Adv. 5, 42754 (2015)

    Article  CAS  Google Scholar 

  13. D. Bousa, J. Luxa, V. Mazanek, O. Jankovsky, D. Sedmidubsky, K. Klimova, M. Pumera, Z. Sofer, RSC Adv. 6, 66884 (2016)

    Article  CAS  Google Scholar 

  14. J. Zheng, H.T. Liu, B. Wu, C.A. Di, Y.L. Guo, T. Wu, G. Yu, Y.Q. Liu, D.B. Zhu, Sci. Rep. 2, 662 (2012)

    Article  Google Scholar 

  15. J. Gao, F. Bao, Q.D. Zhu, Z.F. Tan, T. Chen, H.H. Cai, C. Zhao, Q.X. Cheng, Y.D. Yang, R. Ma, Polym. Chem. 4, 1672 (2013)

    Article  CAS  Google Scholar 

  16. Y.Z. Tan, B. Yang, K. Parvez, A. Narita, S. Osella, D. Beljonne, X. Feng, K. Mullen, Nat. Commun. 4, 2646 (2013)

    Google Scholar 

  17. J.F. Friedrich, S. Wettmarshausen, S. Hanelt, R. Mach, R. Mix, E.B. Zeynalov, A. Meyer-Plath, Carbon 48, 3884 (2010)

    Article  CAS  Google Scholar 

  18. H.L. Poh, P. Simek, Z. Sofer, M. Pumera, Chemistry 19, 2655 (2013)

    Article  CAS  Google Scholar 

  19. O. Jankovsky, P. Simek, K. Klimova, D. Sedmidubsky, S. Matejkova, M. Pumera, Z. Sofer, Nanoscale 6, 6065 (2014)

    Article  CAS  Google Scholar 

  20. I.Y. Jeon, H.J. Choi, M. Choi, J.M. Seo, S.M. Jung, M.J. Kim, S. Zhang, L.P. Zhang, Z.H. Xia, L.M. Dai, N. Park, J.B. Baek, Sci. Rep. 3, 1810 (2013)

    Article  Google Scholar 

  21. Y. Li, Res. Chem. Intermed. 41, 4977 (2015)

    Article  CAS  Google Scholar 

  22. S.M. Maddox, C.J. Nalbandian, D.E. Smith, J.L. Gustafson, Org. Lett. 17, 1042 (2015)

    Article  CAS  Google Scholar 

  23. L. Moradi, I. Etesami, Fuller. Nanotub. Carbon Nanostruct. 24, 213 (2016)

    Article  CAS  Google Scholar 

  24. H. Goto, T. Tajima, K. Kobayashi, Y. Takaguchi, K. Nueangnoraj, H. Nishihara, Chem. Lett. 45, 601 (2016)

    Article  CAS  Google Scholar 

  25. F.L. Lambert, W.D. Ellis, R.J. Parry, J. Org. Chem. 30, 304 (1965)

    Article  CAS  Google Scholar 

  26. G.K. Prakash, T. Mathew, D. Hoole, P.M. Esteves, Q. Wang, G. Rasul, G.A. Olah, J. Am. Chem. Soc. 126, 15770 (2004)

    Article  CAS  Google Scholar 

  27. K. Rajesh, M. Somasundaram, R. Saiganesh, K.K. Balasubramanian, J. Org. Chem. 72, 5867 (2007)

    Article  CAS  Google Scholar 

  28. I.Y. Jeon, H.J. Choi, S.Y. Bae, D.W. Chang, J.B. Baek, J. Mater. Chem. 21, 7820 (2011)

    Article  CAS  Google Scholar 

  29. K.H. Liu, S.L. Chen, Y.F. Luo, D.M. Jia, H. Gao, G.J. Hu, L. Liu, Compos. Sci. Technol. 88, 84 (2013)

    Article  CAS  Google Scholar 

  30. D.W. Chang, H.J. Choi, I.Y. Jeon, J.B. Beak, Chem. Rec. 13, 224 (2013)

    Article  CAS  Google Scholar 

  31. T. Sainsbury, M. Passarelli, M. Naftaly, S. Gnaniah, S.J. Spencer, A.J. Pollard, ACS Appl. Mater. Interfaces 8, 4870 (2016)

    Article  CAS  Google Scholar 

  32. H. Au, N. Rubio, M.S.P. Shaffer, Chem. Sci. 9, 209 (2018)

    Article  CAS  Google Scholar 

  33. H.L. Poh, P. Simek, Z. Sofer, M. Pumera, Chem. Eur. J. 19, 2655 (2013)

    Article  CAS  Google Scholar 

  34. Y. Yao, V. Velpari, J. Economy, J. Mater. Chem. A 1, 12103 (2013)

    Article  CAS  Google Scholar 

  35. J.F. Colomer, R. Marega, H. Traboulsi, M. Meneghetti, G.V. Tendeloo, D. Bonifazi, Chem. Mater. 21, 4747 (2009)

    Article  CAS  Google Scholar 

  36. L. Oliveira, F. Lu, L. Andrews, G.A. Takacs, M. Mehan, T. Debies, J. Mater. Res. 29, 239 (2014)

    Article  CAS  Google Scholar 

  37. H. Medina, Y.C. Lin, D. Obergfell, P.W. Chiu, Adv. Funct. Mater. 21, 2687 (2011)

    Article  CAS  Google Scholar 

  38. L.G. Bulusheva, A.V. Okotrub, E. Flahaut, I.P. Asanov, P.N. Gevko, V.O. Koroteev, Y.V. Fedoseeva, A. Yaya, C.P. Ewels, Chem. Mater. 24, 2708 (2012)

    Article  CAS  Google Scholar 

  39. K. Gopalakrishnan, K.S. Subrahmanyam, P. Kumar, A. Govindaraj, C.N.R. Rao, RSC Adv. 2, 1605 (2012)

    Article  CAS  Google Scholar 

  40. T. Sainsbury, A. O’Neill, M.K. Passarelli, M. Seraffon, D. Gohil, S. Gnaniah, S.J. Spencer, A. Rae, J.N. Coleman, Chem. Mater. 26, 7039 (2014)

    Article  CAS  Google Scholar 

  41. E.J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda, E. Kaxiras, ACS Nano 10, 2803 (2016)

    Article  CAS  Google Scholar 

  42. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)

    Article  CAS  Google Scholar 

  43. D. Bousa, M. Pumera, D. Sedmidubsky, J. Sturala, J. Luxa, V. Mazanek, Z. Sofer, Nanoscale 8, 1493 (2015)

    Article  Google Scholar 

  44. N.A. Kumar, H. Nolan, N. Mcevoy, E. Rezvani, R.L. Doyle, M.E.G. Lyons, G.S. Duesberg, J. Mater. Chem. A 1, 4431 (2013)

    Article  CAS  Google Scholar 

  45. D. Bouša, M. Pumera, D. Sedmidubský, J. Šturala, J. Luxa, V. Mazánek, Z. Sofer, Nanoscale 8, 1493 (2016)

    Article  Google Scholar 

  46. A. Bellunato, T.H. Arjmandi, Y. Cesa, G.F. Schneider, ChemPhysChem 17, 785 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21474065) via the Sichuan Province Science and Technology Support Project (2017GZ0422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, S., Jin, Y., Sun, X. et al. Aqueous-based bromination of graphene by electrophilic substitution reaction: a defect-free approach for graphene functionalization. Res Chem Intermed 44, 3523–3536 (2018). https://doi.org/10.1007/s11164-018-3322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3322-3

Keywords

Navigation