Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3523–3536 | Cite as

Aqueous-based bromination of graphene by electrophilic substitution reaction: a defect-free approach for graphene functionalization

  • Shuangquan Lai
  • Yong Jin
  • Xiaopeng Sun
  • Jiezhou Pan
  • Weining Du
  • Liangjie Shi
Article
  • 94 Downloads

Abstract

A simple and effective approach for covalent bromination of reduced graphene oxide (RGO) using N-bromosuccinimide (NBS) in aqueous solution is reported. We postulate that this was achieved by using sulfuric acid to decompose NBS and facilitate the formation of bromine cations, which in turn acted as electrophilic reagents and covalently bonded to the defect sites (mostly sp2C–H) graphene sheets via electrophilic substitution reaction. The bonding situation and the content of bromine in the obtained brominated RGO (RGO-Br) were characterized using FTIR, XPS, EDS, and TGA techniques. The structure and morphology changes of the graphene sheets were also characterized by SEM, TEM, AFM, and Raman. The results show that the RGO sheets were functionalized with a high bromine content (~ 7.28 at%) and without further damaging the conjugated structure. Considering that C–Br functional groups can be further modified by a variety of organic functional groups, RGO-Br could be used as a promising intermediate in the synthesis of other functional graphene materials for various potential applications.

Keywords

Covalent bromination Reduced graphene oxide N-Bromosuccinimide Aqueous solution Electrophilic substitution 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21474065) via the Sichuan Province Science and Technology Support Project (2017GZ0422).

References

  1. 1.
    M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)CrossRefGoogle Scholar
  2. 2.
    G. Qi, W. Zhang, Y. Dai, Res. Chem. Intermed. 41, 1 (2013)Google Scholar
  3. 3.
    S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, A. Abdala, Sen. Actuat. B Chem. 218, 160 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Chem. Mater. 27, 2100 (2015)CrossRefGoogle Scholar
  5. 5.
    G.T. Wu, X.L. Wei, Z.Y. Zhang, Q. Chen, L.M. Peng, Adv. Funct. Mater. 25, 5972 (2015)CrossRefGoogle Scholar
  6. 6.
    S.P. Economopoulos, G. Rotas, Y. Miyata, H. Shinohara, N. Tagmatarchis, ACS Nano 4, 7499 (2010)CrossRefGoogle Scholar
  7. 7.
    A.J. Wang, W. Yu, Z.G. Xiao, Y.L. Song, L.L. Long, M.P. Cifuentes, M.G. Humphrey, C. Zhang, Nano Res. 8, 870 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Gao, D. Liu, S. Tang, C. Huang, M. He, Y. Guo, X. Sun, B. Gao, Sci. Rep. 6, 20034 (2016)CrossRefGoogle Scholar
  9. 9.
    I.Y. Jeon, D.S. Yu, S.Y. Bae, H.J. Choi, D.W. Chang, L.M. Dai, J.B. Baek, Chem. Mater. 23, 3987 (2011)CrossRefGoogle Scholar
  10. 10.
    F. Karlicky, R. Zboril, M. Otyepka, J. Chem. Phys. 137, 034709 (2012)CrossRefGoogle Scholar
  11. 11.
    J.F. Friedrich, G. Hidde, A. Lippitz, W.E.S. Unger, Plasma Chem. Plasma 34, 621 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.J. Yao, J. Gao, F. Bao, S.F. Jiang, X. Zhang, R. Ma, RSC Adv. 5, 42754 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Bousa, J. Luxa, V. Mazanek, O. Jankovsky, D. Sedmidubsky, K. Klimova, M. Pumera, Z. Sofer, RSC Adv. 6, 66884 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Zheng, H.T. Liu, B. Wu, C.A. Di, Y.L. Guo, T. Wu, G. Yu, Y.Q. Liu, D.B. Zhu, Sci. Rep. 2, 662 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Gao, F. Bao, Q.D. Zhu, Z.F. Tan, T. Chen, H.H. Cai, C. Zhao, Q.X. Cheng, Y.D. Yang, R. Ma, Polym. Chem. 4, 1672 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.Z. Tan, B. Yang, K. Parvez, A. Narita, S. Osella, D. Beljonne, X. Feng, K. Mullen, Nat. Commun. 4, 2646 (2013)Google Scholar
  17. 17.
    J.F. Friedrich, S. Wettmarshausen, S. Hanelt, R. Mach, R. Mix, E.B. Zeynalov, A. Meyer-Plath, Carbon 48, 3884 (2010)CrossRefGoogle Scholar
  18. 18.
    H.L. Poh, P. Simek, Z. Sofer, M. Pumera, Chemistry 19, 2655 (2013)CrossRefGoogle Scholar
  19. 19.
    O. Jankovsky, P. Simek, K. Klimova, D. Sedmidubsky, S. Matejkova, M. Pumera, Z. Sofer, Nanoscale 6, 6065 (2014)CrossRefGoogle Scholar
  20. 20.
    I.Y. Jeon, H.J. Choi, M. Choi, J.M. Seo, S.M. Jung, M.J. Kim, S. Zhang, L.P. Zhang, Z.H. Xia, L.M. Dai, N. Park, J.B. Baek, Sci. Rep. 3, 1810 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Li, Res. Chem. Intermed. 41, 4977 (2015)CrossRefGoogle Scholar
  22. 22.
    S.M. Maddox, C.J. Nalbandian, D.E. Smith, J.L. Gustafson, Org. Lett. 17, 1042 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Moradi, I. Etesami, Fuller. Nanotub. Carbon Nanostruct. 24, 213 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Goto, T. Tajima, K. Kobayashi, Y. Takaguchi, K. Nueangnoraj, H. Nishihara, Chem. Lett. 45, 601 (2016)CrossRefGoogle Scholar
  25. 25.
    F.L. Lambert, W.D. Ellis, R.J. Parry, J. Org. Chem. 30, 304 (1965)CrossRefGoogle Scholar
  26. 26.
    G.K. Prakash, T. Mathew, D. Hoole, P.M. Esteves, Q. Wang, G. Rasul, G.A. Olah, J. Am. Chem. Soc. 126, 15770 (2004)CrossRefGoogle Scholar
  27. 27.
    K. Rajesh, M. Somasundaram, R. Saiganesh, K.K. Balasubramanian, J. Org. Chem. 72, 5867 (2007)CrossRefGoogle Scholar
  28. 28.
    I.Y. Jeon, H.J. Choi, S.Y. Bae, D.W. Chang, J.B. Baek, J. Mater. Chem. 21, 7820 (2011)CrossRefGoogle Scholar
  29. 29.
    K.H. Liu, S.L. Chen, Y.F. Luo, D.M. Jia, H. Gao, G.J. Hu, L. Liu, Compos. Sci. Technol. 88, 84 (2013)CrossRefGoogle Scholar
  30. 30.
    D.W. Chang, H.J. Choi, I.Y. Jeon, J.B. Beak, Chem. Rec. 13, 224 (2013)CrossRefGoogle Scholar
  31. 31.
    T. Sainsbury, M. Passarelli, M. Naftaly, S. Gnaniah, S.J. Spencer, A.J. Pollard, ACS Appl. Mater. Interfaces 8, 4870 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Au, N. Rubio, M.S.P. Shaffer, Chem. Sci. 9, 209 (2018)CrossRefGoogle Scholar
  33. 33.
    H.L. Poh, P. Simek, Z. Sofer, M. Pumera, Chem. Eur. J. 19, 2655 (2013)CrossRefGoogle Scholar
  34. 34.
    Y. Yao, V. Velpari, J. Economy, J. Mater. Chem. A 1, 12103 (2013)CrossRefGoogle Scholar
  35. 35.
    J.F. Colomer, R. Marega, H. Traboulsi, M. Meneghetti, G.V. Tendeloo, D. Bonifazi, Chem. Mater. 21, 4747 (2009)CrossRefGoogle Scholar
  36. 36.
    L. Oliveira, F. Lu, L. Andrews, G.A. Takacs, M. Mehan, T. Debies, J. Mater. Res. 29, 239 (2014)CrossRefGoogle Scholar
  37. 37.
    H. Medina, Y.C. Lin, D. Obergfell, P.W. Chiu, Adv. Funct. Mater. 21, 2687 (2011)CrossRefGoogle Scholar
  38. 38.
    L.G. Bulusheva, A.V. Okotrub, E. Flahaut, I.P. Asanov, P.N. Gevko, V.O. Koroteev, Y.V. Fedoseeva, A. Yaya, C.P. Ewels, Chem. Mater. 24, 2708 (2012)CrossRefGoogle Scholar
  39. 39.
    K. Gopalakrishnan, K.S. Subrahmanyam, P. Kumar, A. Govindaraj, C.N.R. Rao, RSC Adv. 2, 1605 (2012)CrossRefGoogle Scholar
  40. 40.
    T. Sainsbury, A. O’Neill, M.K. Passarelli, M. Seraffon, D. Gohil, S. Gnaniah, S.J. Spencer, A. Rae, J.N. Coleman, Chem. Mater. 26, 7039 (2014)CrossRefGoogle Scholar
  41. 41.
    E.J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda, E. Kaxiras, ACS Nano 10, 2803 (2016)CrossRefGoogle Scholar
  42. 42.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)CrossRefGoogle Scholar
  43. 43.
    D. Bousa, M. Pumera, D. Sedmidubsky, J. Sturala, J. Luxa, V. Mazanek, Z. Sofer, Nanoscale 8, 1493 (2015)CrossRefGoogle Scholar
  44. 44.
    N.A. Kumar, H. Nolan, N. Mcevoy, E. Rezvani, R.L. Doyle, M.E.G. Lyons, G.S. Duesberg, J. Mater. Chem. A 1, 4431 (2013)CrossRefGoogle Scholar
  45. 45.
    D. Bouša, M. Pumera, D. Sedmidubský, J. Šturala, J. Luxa, V. Mazánek, Z. Sofer, Nanoscale 8, 1493 (2016)CrossRefGoogle Scholar
  46. 46.
    A. Bellunato, T.H. Arjmandi, Y. Cesa, G.F. Schneider, ChemPhysChem 17, 785 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shuangquan Lai
    • 1
    • 2
  • Yong Jin
    • 1
    • 2
  • Xiaopeng Sun
    • 1
    • 2
  • Jiezhou Pan
    • 1
    • 2
  • Weining Du
    • 1
    • 2
  • Liangjie Shi
    • 1
    • 2
  1. 1.Key Laboratory of Leather Chemistry and Engineering (Sichuan University)Ministry of EducationChengduChina
  2. 2.National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduChina

Personalised recommendations