Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3455–3474 | Cite as

The promotion effect of Fe on CeZr2O x catalyst for the low-temperature SCR of NO x by NH3

  • Xiao Sun
  • Rui-tang Guo
  • Ming-yuan Li
  • Peng Sun
  • Wei-guo Pan
  • Shu-ming Liu
  • Jian Liu
  • Shuai-wei Liu


Fe was used as the modifier to improve the performance of CeZr2O x catalyst for the selective catalytic reduction (SCR) reaction with ammonia. Experimental results revealed that proper Fe species (Fe/Ce molar ratio = 2) could effectively improve the SCR activity of CeZr2O x , along with the elevated resistance to SO2 and H2O. The characterization results including BET, XRD, H2-TPR and NH3-TPD confirmed that Fe species in Fe2CeZr2O x catalyst could inhibit the formation of ZrO2 crystals and lead to higher reducibility and surface acidity. In addition, more Ce3+ and surface active oxygen species could be detected on Fe2CeZr2O x compared with CeZr2O x . By means of in situ DRIFT technique, it could be deduced that the SCR reaction process over Fe2CeZr2O x was accelerated mainly through theL–H pathway due to the advanced adsorption of NH3 and NO x species, along with the promoted NO conversion to NO2. Therefore, the modification of CeZrO x catalyst by Fe had a significant stimulation effect on its low-temperature SCR performance.


CeZr2Ox catalyst Fe NH3-SCR Activity Reaction mechanism 



This work was supported by the Natural Science Foundation of China (21546014) and the Natural Science Foundation of Shanghai, China (14ZR1417800).


  1. 1.
    Z. Liu, Y. Liu, Y. Li, H. Su, L. Ma, Chem. Eng. J. 283, 1044–1050 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Pan, J. Hong, R. Guo, W. Zhen, H. Ding, Q. Jin, C. Ding, S. Guo, J. Ind. Eng. Chem. 20, 2224–2227 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Maitarad, D. Zhang, R. Gao, L. Shi, L. Li, L. Huang, T. Rungrotmongkol, J. Zhang, J. Phys. Chem. C 117, 9999–10006 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Thirupathi, P.G. Smirniotis, J. Catal. 288, 74–83 (2012)CrossRefGoogle Scholar
  5. 5.
    P. Sun, R. Guo, S. Liu, S. Wang, W. Pan, M. Li, Appl. Catal. A 531, 129–138 (2017)CrossRefGoogle Scholar
  6. 6.
    E. Park, M. Kim, H. Jung, S. Chin, J. Jurng, ACS Catal. 3, 1518–1525 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Qiu, S. Zhan, H. Yu, D. Zhu, S. Wang, Nanoscale 7, 2568–2577 (2015)CrossRefGoogle Scholar
  8. 8.
    W. Li, R. Guo, S. Wang, W. Pan, Q. Chen, M. Li, P. Sun, S. Liu, Fuel Process. Technol. 154, 235–242 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Meng, W. Zhan, Y. Guo, Y. Guo, L. Wang, G. Lu, ACS Catal. 5, 5973–5983 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Appl. Catal. A 327, 261–269 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Shu, H. Sun, X. Quan, S. Chen, J. Phys. Chem. C 116, 25319–25327 (2012)CrossRefGoogle Scholar
  12. 12.
    R. Guo, W. Zhen, W. Pan, Y. Zhou, J. Hong, H. Xu, Q. Jin, C. Ding, S. Guo, J. Ind. Eng. Chem. 20, 1577–1580 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Yang, Y. Guo, H. Chang, L. Ma, Y. Peng, Z. Qu, N. Yan, C. Wang, J. Li, Appl. Catal. B 136–137, 19–28 (2013)CrossRefGoogle Scholar
  14. 14.
    N. Yang, R. Guo, Y. Tian, W. Pan, Q. Chen, Q. Wang, C. Lu, S. Wang, Fuel 179, 305–311 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Shang, W. Cai, W. Zhao, Y. Bu, Q. Zhong, Catal. Lett. 144, 538–544 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Kǎspar, P. Fornasiero, M. Graziani, Catal. Today 50, 285–298 (1999)CrossRefGoogle Scholar
  17. 17.
    H.W. Jen, G.W. Graham, W. Chun, R.W. McCabe, J.P. Cuif, S.E. Deutsch, O. Touret, Catal. Today 50, 309–328 (1999)CrossRefGoogle Scholar
  18. 18.
    S. Ding, F. Liu, X. Shi, H. He, Appl. Catal. B 180, 766–774 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Ma, X. Wu, H. Härelind, D. Weng, B. Wang, Z. Si, J. Mol. Catal. A 423, 172–180 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Ding, F. Liu, X. Shi, K. Liu, Z. Lian, L. Xie, H. He, A.C.S. Appl, Mater. Interfaces 7, 9497–9506 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Liu, H. He, Y. Ding, C. Zhang, Appl. Catal. B 93, 194–204 (2009)CrossRefGoogle Scholar
  22. 22.
    B. Shen, T. Liu, N. Zhao, X. Yang, L. Deng, J. Environ. Sci. 22, 1447–1454 (2010)CrossRefGoogle Scholar
  23. 23.
    D.W. Kwon, K.H. Park, S.C. Hong, Chem. Eng. J. 284, 315–324 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Wijayanti, S. Andonova, A. Kumar, J. Li, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Appl. Catal. B 166–167, 568–579 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Liu, J. Li, A.M. Junaid, Catal. Today 153, 95–102 (2010)CrossRefGoogle Scholar
  26. 26.
    G. Qi, R. Yang, Appl. Catal. A Gen. 287, 25–33 (2005)CrossRefGoogle Scholar
  27. 27.
    H. Xu, Q. Zhang, C. Qiu, T. Lin, M. Gong, Y. Chen, Chem. Eng. Sci. 76, 120–128 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Wang, X. Chen, S. Gao, Z. Wu, Y. Liu, X. Weng, Catal. Sci. Technol. 3, 715–722 (2013)CrossRefGoogle Scholar
  29. 29.
    T. Boningari, A. Somogyvari, P.G. Smirniotis, Ind. Eng. Chem. Res. 56, 5483–5494 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Hui, T. Tan, H. Yu, W. Liu, C. Xu, Z. Xu, H. Hng, Q. Yan, ACS Nano 8, 4004–4014 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Han, D. Zhang, P. Maitarad, L. Shi, S. Cai, H. Li, L. Huang, J. Zhang, Catal. Sci. Technol. 5, 438–446 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D.S. Su, W. Shen, Angew. Chem. Int. Ed. 51, 2989–2993 (2012)CrossRefGoogle Scholar
  33. 33.
    H. Hu, S. Cai, H. Li, L. Huang, L. Shi, D. Zhang, ACS Catal. 5, 6069–6077 (2015)CrossRefGoogle Scholar
  34. 34.
    F. Larachi, J. Pierre, A. Adnot, A. Bernis, Appl. Surf. Sci. 195, 236–250 (2002)CrossRefGoogle Scholar
  35. 35.
    P. Wang, Q. Wang, X. Ma, R. Guo, W. Pan, Catal. Commun. 71, 84–87 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Martinez, G. Prieto, M.A. Arribas, P. Concepcion, J.F. Sanchez-Royo, J. Catal. 248, 288–302 (2007)CrossRefGoogle Scholar
  37. 37.
    R. Kopelent, J.A. van Bokhoven, J. Szlachetko, J. Edebeli, C. Paun, M. Nachtegaal, O.V. Safonova, Angew. Chem. Int. Ed. 54, 8728–8731 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Guo, C. Lu, W. Pan, W. Zhen, Q. Wang, Q. Chen, H. Ding, N. Yang, Catal. Commun. 59, 136–139 (2015)CrossRefGoogle Scholar
  39. 39.
    Z. Liu, J. Zhu, J. Li, L. Ma, S.I. Woo, A.C.S. Appl, Mater. Interfaces 6, 14500–14508 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Koebel, G. Madia, F. Raimondi, A. Wokaun, J. Catal. 209, 159–165 (2002)CrossRefGoogle Scholar
  41. 41.
    S. Damyanova, C.A. Perez, M. Schmal, J.M.C. Bueno, Appl. Catal. A 234, 271–282 (2002)CrossRefGoogle Scholar
  42. 42.
    P. Li, Y. Xin, Q. Li, Z. Wang, Z. Zhang, L. Zheng, Environ. Sci. Technol. 46, 9600–9605 (2012)CrossRefGoogle Scholar
  43. 43.
    H. Xu, Y. Wang, Y. Gao, Z. Fang, T. Lin, M. Gong, Y. Chen, Chem. Eng. J. 240, 62–73 (2014)CrossRefGoogle Scholar
  44. 44.
    D.A. Peña, B.S. Uphade, P.G. Smirniotis, J. Catal. 221, 421–431 (2004)CrossRefGoogle Scholar
  45. 45.
    S. Roy, B. Viswanath, M.S. Hehde, G. Mardas, J. Phys. Chem. C 112, 6002–6012 (2008)CrossRefGoogle Scholar
  46. 46.
    Z. Wu, B. Jiang, Y. Liu, H. Wang, R. Jin, Environ. Sci. Technol. 41, 5812–5817 (2007)CrossRefGoogle Scholar
  47. 47.
    Y. Zhang, X. Zhu, K. Shen, X. Xu, K. Sun, C. Zhou, J. Colloid Interface Sci. 376, 233–238 (2012)CrossRefGoogle Scholar
  48. 48.
    Y. Liu, T. Gu, X. Weng, Y. Wang, Z. Wu, H. Wang, J. Phys. Chem. C 116, 16582–16592 (2012)CrossRefGoogle Scholar
  49. 49.
    M. Adamowska, A. Krztoń, M. Najbar, P.D. Costa, G. Djéga-Mariadassou, Catal. Today 137, 288–291 (2008)CrossRefGoogle Scholar
  50. 50.
    R. Guo, S. Wang, W. Pan, M. Li, P. Sun, S. Liu, X. Sun, S. Liu, J. Liu, J. Phys. Chem. C 121, 7881–7891 (2017)CrossRefGoogle Scholar
  51. 51.
    W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, J. Catal. 171, 219–230 (1997)CrossRefGoogle Scholar
  52. 52.
    W. Li, R. Guo, S. Wang, W. Pan, Q. Chen, M. Li, P. Sun, S. Liu, RSC Adv. 6, 82707–82715 (2016)CrossRefGoogle Scholar
  53. 53.
    Y. Chen, J. Wang, Z. Yan, L. Liu, Z. Zhang, X. Wang, Catal. Sci. Technol. 5, 2251–2259 (2014)CrossRefGoogle Scholar
  54. 54.
    Z. Lian, F. Liu, H. He, Ind. Eng. Chem. Res. 53, 19506–19511 (2014)CrossRefGoogle Scholar
  55. 55.
    N. Yang, R. Guo, W. Pan, Q. Chen, Q. Wang, C. Lu, S. Wang, Appl. Surf. Sci. 378, 513–518 (2016)CrossRefGoogle Scholar
  56. 56.
    S. Wang, R. Guo, W. Pan, M. Li, P. Sun, S. Liu, S. Liu, X. Sun, J. Liu, Phys. Chem. Chem. Phys. 19, 5333–5342 (2017)CrossRefGoogle Scholar
  57. 57.
    R. Qu, Y. Peng, X. Sun, J. Li, X. Gao, K. Cen, Catal. Sci. Technol. 6, 2136–2142 (2016)CrossRefGoogle Scholar
  58. 58.
    R. Yang, C. Wang, J. Li, N. Yan, L. Ma, H. Chang, Appl. Catal. B 110, 71–80 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy Source and Mechanical EngineeringShanghai University of Electric PowerShanghaiPeople’s Republic of China
  2. 2.Shanghai Engineering Research Center of Power Generation Environment ProtectionShanghaiPeople’s Republic of China
  3. 3.Shanghai Institute of Pollution Control and Ecological SecurityShanghaiPeople’s Republic of China

Personalised recommendations