Skip to main content
Log in

Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

α-Fe2O3 microcrystals were produced for application as catalyst in different oxidation processes in both chemical and biological matrices. Hematite was produced by sol–gel method in situ with silica matrix and characterized by X-ray diffraction analysis, scanning electron microscopy with energy-dispersive X-ray spectrometry, and transmission electron microscopy. The ability of the catalyst to produce hydroxyl radicals (·OH) was evaluated by electron paramagnetic resonance measurements using 5,5-dimethyl- 1-pyrroline-N-oxide (DMPO) as spin trap. Characterization of the resulting DMPO-OH adduct established that α-Fe2O3 microcrystals could generate ·OH when Fenton chemistry was present. Additionally, the catalyst exhibited semiconducting properties, as the DMPO-OH signal was produced under visible-light irradiation in presence of O2 but without requiring H2O2. In a pollution control context, 2,4-dinitrophenol (2,4-DNP) degradation was used as probe reaction, with >99 % of this pollutant being removed in presence of H2O2 under visible light. NO 2 , NO 3 , hydroxylated compounds, and a carboxylic acid were identified as photoproducts, suggesting a degradation pathway. Finally, catalyst reactivity in biological matrices was evaluated by oxidative degradation of lipids, revealing that α-Fe2O3 is a good oxidative stress inducer, representing a new application for materials based on iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodríguez, Water Res. 36, 1034 (2002)

    Article  CAS  Google Scholar 

  2. J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Appl. Catal. B Environ. 98, 10 (2010)

    Article  CAS  Google Scholar 

  3. J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 36, 1 (2006)

    Article  CAS  Google Scholar 

  4. C. Wang, H. Liu, Z. Sun, J. Huag, Y. Liao, Int. J. Photoenergy 2012, 1 (2012)

    Google Scholar 

  5. W. Du, Y. Xu, Y. Wang, Langmuir 24, 175 (2008)

    Article  CAS  Google Scholar 

  6. R. Sugrañez, J. Balbuena, M. Cruz-Yusta, F. Martín, J. Morales, L. Sánchez, Appl. Catal. B Environ. 165, 529 (2015)

    Article  Google Scholar 

  7. A.G. Joly, J.R. Williams, S.A. Chambers, G. Xiong, W.P. Hess, D.M. Laman, J. Appl. Phys. 99, 53521 (2006)

    Article  Google Scholar 

  8. J.H. Kennedy, K.W. Frese, J. Electrochem. Soc. 125, 709 (1978)

    Article  CAS  Google Scholar 

  9. Y. Wang, W. Du, Y. Xu, Langmuir 25, 2895 (2009)

    Article  CAS  Google Scholar 

  10. X. Zhang, Y. Niu, Y. Li, X. Hou, Y. Wang, R. Bai, J. Zhao, Mater. Lett. 99, 111 (2013)

    Article  CAS  Google Scholar 

  11. X. Liu, K. Chen, J.-J. Shim, J. Huang, J. Saudi Chem. Soc. 19, 479 (2015)

    Article  Google Scholar 

  12. D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environ. Sci. 5, 6682 (2012)

    Article  CAS  Google Scholar 

  13. K. Cheng, Y.P. He, Y.M. Miao, B.S. Zou, Y.G. Wang, T.H. Wang, X.T. Zhang, Z.L. Du, J. Phys. Chem. B 110, 7259 (2006)

    Article  CAS  Google Scholar 

  14. T. Meng, P. Xie, H. Qin, H. Liu, W. Hua, X. Li, Z. Ma, J. Mol. Catal. A Chem. 421, 109 (2016)

    Article  CAS  Google Scholar 

  15. J.-P. Jolivet, C. Chanéac, E. Tronc, Chem. Commun. 5, 477 (2004)

    Article  Google Scholar 

  16. L. Machala, J. Tuček, R. Zbořil, Chem. Mater. 23, 3255 (2011)

    Article  CAS  Google Scholar 

  17. M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, V. Spasojevic, J. Magn. Magn. Mater. 321, 12 (2009)

    Article  CAS  Google Scholar 

  18. L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)

    Article  CAS  Google Scholar 

  19. L. Casas, A. Roig, E. Molins, J.M. Grenèche, J. Asenjo, J. Tejada, Appl. Phys. A 74, 591 (2002)

    Article  CAS  Google Scholar 

  20. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)

    Article  CAS  Google Scholar 

  21. Y. Yang, H. Ma, J. Zhuang, X. Wang, Inorg. Chem. 50, 10143 (2011)

    Article  CAS  Google Scholar 

  22. Q. Xiang, G. Chen, T.-C. Lau, RSC Adv. 5, 52210 (2015)

    Article  CAS  Google Scholar 

  23. J. Zhao, H.-S. Chen, K. Matras-Postolek, P. Yang, CrystEngComm 17, 7175 (2015)

    Article  CAS  Google Scholar 

  24. X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, Adv. Mater. 19, 2324 (2007)

    Article  CAS  Google Scholar 

  25. G. Encheva, B. Samuneva, P. Djambaski, E. Kashchieva, D. Paneva, I. Mitov, J. Non. Cryst. Solids 345–346, 615 (2004)

    Article  Google Scholar 

  26. L. Machala, R. Zboril, A. Gedanken, J. Phys. Chem. B 111, 4003 (2007)

    Article  CAS  Google Scholar 

  27. R. Blasco, F. Castillo, Pestic. Biochem. Physiol. 58, 1 (1997)

    Article  CAS  Google Scholar 

  28. R. Belloli, E. Bolzacchini, L. Clerici, B. Rindone, G. Sesana, V. Librando, Environ. Eng. Sci. 23, 405 (2006)

    Article  CAS  Google Scholar 

  29. S.S. Shukla, K.L. Dorris, B.V. Chikkaveeraiah, J. Hazard. Mater. 164, 310 (2009)

    Article  CAS  Google Scholar 

  30. P. Zhou, J. Zhang, Y. Zhang, G. Zhang, W. Li, C. Wei, J. Liang, Y. Liu, S. Shu, J. Hazard. Mater. 344, 1209 (2018)

    Article  CAS  Google Scholar 

  31. Y. Dadban Shahamat, M. Sadeghi, A. Shahryari, N. Okhovat, F. Bahrami Asl, M.M. Baneshi, Desalin. Water Treat. 57, 20447 (2016)

    Article  CAS  Google Scholar 

  32. Y. Liu, H. Liu, J. Ma, X. Wang, Appl. Catal. B Environ. 91, 284 (2009)

    Article  CAS  Google Scholar 

  33. M.A. Quiroz, J.L. Sánchez-Salas, S. Reyna, E.R. Bandala, J.M. Peralta-Hernández, C.A. Martínez-Huitle, J. Hazard. Mater. 268, 6 (2014)

    Article  CAS  Google Scholar 

  34. Z. Guo, R. Feng, J. Li, Z. Zheng, Y. Zheng, J. Hazard. Mater. 158, 164 (2008)

    Article  CAS  Google Scholar 

  35. M.V. Bagal, B.J. Lele, P.R. Gogate, Ultrason. Sonochem. 20, 1217 (2013)

    Article  CAS  Google Scholar 

  36. M. Myilsamy, M. Mahalakshmi, V. Murugesan, N. Subha, Appl. Surf. Sci. 342, 1 (2015)

    Article  CAS  Google Scholar 

  37. X. Chen, Y. Liu, X. Xia, L. Wang, Appl. Surf. Sci. 407, 470 (2017)

    Article  CAS  Google Scholar 

  38. E.M. Seftel, M. Puscasu, M. Mertens, P. Cool, G. Carja, Catal. Today 252, 7 (2015)

    Article  CAS  Google Scholar 

  39. M.M. Gaschler, B.R. Stockwell, Biochem. Biophys. Res. Commun. 482, 419 (2017)

    Article  CAS  Google Scholar 

  40. A.A. Mirzaei, A.B. Babaei, M. Galavy, A. Youssefi, Fuel Process. Technol. 91, 335 (2010)

    Article  CAS  Google Scholar 

  41. G. Granados-Oliveros, V. Gomez-Vidales, A. Nieto-Camacho, J.A. Morales-Serna, J. Cardenas, M. Salmon, RSC Adv. 3, 937 (2013)

    Article  CAS  Google Scholar 

  42. G. Granados-Oliveros, E.A. Páez-Mozo, F.M. Ortega, C. Ferronato, J.M. Chovelon, Appl. Catal. B Environ. 89, 448 (2009)

    Article  CAS  Google Scholar 

  43. T. Lehóczki, É. Józsa, K. Ösz, J. Photochem. Photobiol. A Chem. 251, 63 (2013)

    Article  Google Scholar 

  44. R.F.P. Nogueira, M.C. Oliveira, W.C. Paterlini, Talanta 66, 86 (2005)

    Article  CAS  Google Scholar 

  45. A. Kiss, L. Juhász, G. Seprényi, K. Kupai, J. Kaszaki, Á. Végh, Br. J. Pharmacol. 160, 1263 (2010)

    Article  CAS  Google Scholar 

  46. T.A. Doane, W.R. Horwáth, Anal. Lett. 36, 2713 (2003)

    Article  CAS  Google Scholar 

  47. R.M. Cornell, U. Schwertmann, Iron Oxides (Wiley-VCH, New York, 2004), p. 365

    Google Scholar 

  48. C. Păcurariu, E.-A. Tăculescu (Moacă), R. Ianoş, O. Marinică, C.-V. Mihali, V. Socoliuc, Ceram. Int. 41, 1079 (2015)

    Article  Google Scholar 

  49. A.S.W. Li, C.F. Chignell, J. Biochem. Biophys. Methods 22, 83 (1991)

    Article  CAS  Google Scholar 

  50. S. Tero-Kubota, Y. Ikegami, T. Kurokawa, R. Sasaki, K. Sugioka, M. Nakano, Biochem. Biophys. Res. Commun. 108, 1025 (1982)

    Article  CAS  Google Scholar 

  51. K.K. Mothilal, J. Johnson Inbaraj, R. Gandhidasan, R. Murugesan, J. Photochem. Photobiol. A Chem. 162, 9 (2004)

    Article  CAS  Google Scholar 

  52. C. Hammond, M.M. Forde, M.H. Ab Rahim, A. Thetford, Q. He, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, N.F. Dummer, D.M. Murphy, A.F. Carley, S.H. Taylor, D.J. Willock, E.E. Stangland, J. Kang, H. Hagen, C.J. Kiely, G.J. Hutchings, Angew. Chem. Int. Ed. 51, 5129 (2012)

    Article  CAS  Google Scholar 

  53. P. Pichat, C. Guillard, L. Amalric, A.-C. Renard, O. Plaidy, Sol. Energy Mater. Sol. Cells 38, 391 (1995)

    Article  CAS  Google Scholar 

  54. X. Zhang, L. Lei, Appl. Surf. Sci. 254, 2406 (2008)

    Article  CAS  Google Scholar 

  55. S. Si, C. Li, X. Wang, Q. Peng, Y. Li, Sensors Actuators B Chem. 119, 52 (2006)

    Article  CAS  Google Scholar 

  56. W. Huang, M. Brigante, F. Wu, K. Hanna, G. Mailhot, Environ. Sci. Pollut. Res. 20, 39 (2013)

    Article  CAS  Google Scholar 

  57. I. Muthuvel, M. Swaminathan, Sol. Energy Mater. Sol. Cells 92, 857 (2008)

    Article  CAS  Google Scholar 

  58. Y. Liu, H. Liu, J. Ma, X. Wang, Appl. Catal. B Environ. 91, 284 (2009)

    Article  CAS  Google Scholar 

  59. J.A. Herrera-Melián, A.J. Martín-Rodríguez, A. Ortega-Méndez, J. Araña, J.M. Doña-Rodríguez, J. Pérez-Peña, J. Environ. Manag. 105, 53 (2012)

    Article  Google Scholar 

  60. L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C. Minero, D. Vione, J. Photochem. Photobiol. A Chem. 307–308, 99 (2015)

    Article  Google Scholar 

  61. T.S. Anthonymuthu, E.M. Kenny, H. Bayır, Brain Res. 1640, 57 (2016)

    Article  CAS  Google Scholar 

  62. E. Niki, Free Radic. Biol. Med. 47, 469 (2009)

    Article  CAS  Google Scholar 

  63. Z. Cheng, Y. Li, Chem. Rev. 107, 2165 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DIEB, UNAL (QUIPU code 201010025976). The authors thank Claudia Rivera Cerecedo and Héctor Malagón Rivero from the Instituto de Fisiología at UNAM for donation of biological samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilma Granados-Oliveros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granados-Oliveros, G., Torres, E., Zambrano, M. et al. Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation. Res Chem Intermed 44, 3407–3424 (2018). https://doi.org/10.1007/s11164-018-3315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3315-2

Keywords

Navigation