Skip to main content

Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation

Abstract

α-Fe2O3 microcrystals were produced for application as catalyst in different oxidation processes in both chemical and biological matrices. Hematite was produced by sol–gel method in situ with silica matrix and characterized by X-ray diffraction analysis, scanning electron microscopy with energy-dispersive X-ray spectrometry, and transmission electron microscopy. The ability of the catalyst to produce hydroxyl radicals (·OH) was evaluated by electron paramagnetic resonance measurements using 5,5-dimethyl- 1-pyrroline-N-oxide (DMPO) as spin trap. Characterization of the resulting DMPO-OH adduct established that α-Fe2O3 microcrystals could generate ·OH when Fenton chemistry was present. Additionally, the catalyst exhibited semiconducting properties, as the DMPO-OH signal was produced under visible-light irradiation in presence of O2 but without requiring H2O2. In a pollution control context, 2,4-dinitrophenol (2,4-DNP) degradation was used as probe reaction, with >99 % of this pollutant being removed in presence of H2O2 under visible light. NO 2 , NO 3 , hydroxylated compounds, and a carboxylic acid were identified as photoproducts, suggesting a degradation pathway. Finally, catalyst reactivity in biological matrices was evaluated by oxidative degradation of lipids, revealing that α-Fe2O3 is a good oxidative stress inducer, representing a new application for materials based on iron oxides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodríguez, Water Res. 36, 1034 (2002)

    CAS  Article  Google Scholar 

  2. 2.

    J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Appl. Catal. B Environ. 98, 10 (2010)

    CAS  Article  Google Scholar 

  3. 3.

    J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 36, 1 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    C. Wang, H. Liu, Z. Sun, J. Huag, Y. Liao, Int. J. Photoenergy 2012, 1 (2012)

    Google Scholar 

  5. 5.

    W. Du, Y. Xu, Y. Wang, Langmuir 24, 175 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    R. Sugrañez, J. Balbuena, M. Cruz-Yusta, F. Martín, J. Morales, L. Sánchez, Appl. Catal. B Environ. 165, 529 (2015)

    Article  Google Scholar 

  7. 7.

    A.G. Joly, J.R. Williams, S.A. Chambers, G. Xiong, W.P. Hess, D.M. Laman, J. Appl. Phys. 99, 53521 (2006)

    Article  Google Scholar 

  8. 8.

    J.H. Kennedy, K.W. Frese, J. Electrochem. Soc. 125, 709 (1978)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Wang, W. Du, Y. Xu, Langmuir 25, 2895 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    X. Zhang, Y. Niu, Y. Li, X. Hou, Y. Wang, R. Bai, J. Zhao, Mater. Lett. 99, 111 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    X. Liu, K. Chen, J.-J. Shim, J. Huang, J. Saudi Chem. Soc. 19, 479 (2015)

    Article  Google Scholar 

  12. 12.

    D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environ. Sci. 5, 6682 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    K. Cheng, Y.P. He, Y.M. Miao, B.S. Zou, Y.G. Wang, T.H. Wang, X.T. Zhang, Z.L. Du, J. Phys. Chem. B 110, 7259 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    T. Meng, P. Xie, H. Qin, H. Liu, W. Hua, X. Li, Z. Ma, J. Mol. Catal. A Chem. 421, 109 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    J.-P. Jolivet, C. Chanéac, E. Tronc, Chem. Commun. 5, 477 (2004)

    Article  Google Scholar 

  16. 16.

    L. Machala, J. Tuček, R. Zbořil, Chem. Mater. 23, 3255 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, V. Spasojevic, J. Magn. Magn. Mater. 321, 12 (2009)

    CAS  Article  Google Scholar 

  18. 18.

    L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)

    CAS  Article  Google Scholar 

  19. 19.

    L. Casas, A. Roig, E. Molins, J.M. Grenèche, J. Asenjo, J. Tejada, Appl. Phys. A 74, 591 (2002)

    CAS  Article  Google Scholar 

  20. 20.

    A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Yang, H. Ma, J. Zhuang, X. Wang, Inorg. Chem. 50, 10143 (2011)

    CAS  Article  Google Scholar 

  22. 22.

    Q. Xiang, G. Chen, T.-C. Lau, RSC Adv. 5, 52210 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    J. Zhao, H.-S. Chen, K. Matras-Postolek, P. Yang, CrystEngComm 17, 7175 (2015)

    CAS  Article  Google Scholar 

  24. 24.

    X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, Adv. Mater. 19, 2324 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    G. Encheva, B. Samuneva, P. Djambaski, E. Kashchieva, D. Paneva, I. Mitov, J. Non. Cryst. Solids 345–346, 615 (2004)

    Article  Google Scholar 

  26. 26.

    L. Machala, R. Zboril, A. Gedanken, J. Phys. Chem. B 111, 4003 (2007)

    CAS  Article  Google Scholar 

  27. 27.

    R. Blasco, F. Castillo, Pestic. Biochem. Physiol. 58, 1 (1997)

    CAS  Article  Google Scholar 

  28. 28.

    R. Belloli, E. Bolzacchini, L. Clerici, B. Rindone, G. Sesana, V. Librando, Environ. Eng. Sci. 23, 405 (2006)

    CAS  Article  Google Scholar 

  29. 29.

    S.S. Shukla, K.L. Dorris, B.V. Chikkaveeraiah, J. Hazard. Mater. 164, 310 (2009)

    CAS  Article  Google Scholar 

  30. 30.

    P. Zhou, J. Zhang, Y. Zhang, G. Zhang, W. Li, C. Wei, J. Liang, Y. Liu, S. Shu, J. Hazard. Mater. 344, 1209 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    Y. Dadban Shahamat, M. Sadeghi, A. Shahryari, N. Okhovat, F. Bahrami Asl, M.M. Baneshi, Desalin. Water Treat. 57, 20447 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    Y. Liu, H. Liu, J. Ma, X. Wang, Appl. Catal. B Environ. 91, 284 (2009)

    CAS  Article  Google Scholar 

  33. 33.

    M.A. Quiroz, J.L. Sánchez-Salas, S. Reyna, E.R. Bandala, J.M. Peralta-Hernández, C.A. Martínez-Huitle, J. Hazard. Mater. 268, 6 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    Z. Guo, R. Feng, J. Li, Z. Zheng, Y. Zheng, J. Hazard. Mater. 158, 164 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    M.V. Bagal, B.J. Lele, P.R. Gogate, Ultrason. Sonochem. 20, 1217 (2013)

    CAS  Article  Google Scholar 

  36. 36.

    M. Myilsamy, M. Mahalakshmi, V. Murugesan, N. Subha, Appl. Surf. Sci. 342, 1 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    X. Chen, Y. Liu, X. Xia, L. Wang, Appl. Surf. Sci. 407, 470 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    E.M. Seftel, M. Puscasu, M. Mertens, P. Cool, G. Carja, Catal. Today 252, 7 (2015)

    CAS  Article  Google Scholar 

  39. 39.

    M.M. Gaschler, B.R. Stockwell, Biochem. Biophys. Res. Commun. 482, 419 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    A.A. Mirzaei, A.B. Babaei, M. Galavy, A. Youssefi, Fuel Process. Technol. 91, 335 (2010)

    CAS  Article  Google Scholar 

  41. 41.

    G. Granados-Oliveros, V. Gomez-Vidales, A. Nieto-Camacho, J.A. Morales-Serna, J. Cardenas, M. Salmon, RSC Adv. 3, 937 (2013)

    CAS  Article  Google Scholar 

  42. 42.

    G. Granados-Oliveros, E.A. Páez-Mozo, F.M. Ortega, C. Ferronato, J.M. Chovelon, Appl. Catal. B Environ. 89, 448 (2009)

    CAS  Article  Google Scholar 

  43. 43.

    T. Lehóczki, É. Józsa, K. Ösz, J. Photochem. Photobiol. A Chem. 251, 63 (2013)

    Article  Google Scholar 

  44. 44.

    R.F.P. Nogueira, M.C. Oliveira, W.C. Paterlini, Talanta 66, 86 (2005)

    CAS  Article  Google Scholar 

  45. 45.

    A. Kiss, L. Juhász, G. Seprényi, K. Kupai, J. Kaszaki, Á. Végh, Br. J. Pharmacol. 160, 1263 (2010)

    CAS  Article  Google Scholar 

  46. 46.

    T.A. Doane, W.R. Horwáth, Anal. Lett. 36, 2713 (2003)

    CAS  Article  Google Scholar 

  47. 47.

    R.M. Cornell, U. Schwertmann, Iron Oxides (Wiley-VCH, New York, 2004), p. 365

    Google Scholar 

  48. 48.

    C. Păcurariu, E.-A. Tăculescu (Moacă), R. Ianoş, O. Marinică, C.-V. Mihali, V. Socoliuc, Ceram. Int. 41, 1079 (2015)

    Article  Google Scholar 

  49. 49.

    A.S.W. Li, C.F. Chignell, J. Biochem. Biophys. Methods 22, 83 (1991)

    CAS  Article  Google Scholar 

  50. 50.

    S. Tero-Kubota, Y. Ikegami, T. Kurokawa, R. Sasaki, K. Sugioka, M. Nakano, Biochem. Biophys. Res. Commun. 108, 1025 (1982)

    CAS  Article  Google Scholar 

  51. 51.

    K.K. Mothilal, J. Johnson Inbaraj, R. Gandhidasan, R. Murugesan, J. Photochem. Photobiol. A Chem. 162, 9 (2004)

    CAS  Article  Google Scholar 

  52. 52.

    C. Hammond, M.M. Forde, M.H. Ab Rahim, A. Thetford, Q. He, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, N.F. Dummer, D.M. Murphy, A.F. Carley, S.H. Taylor, D.J. Willock, E.E. Stangland, J. Kang, H. Hagen, C.J. Kiely, G.J. Hutchings, Angew. Chem. Int. Ed. 51, 5129 (2012)

    CAS  Article  Google Scholar 

  53. 53.

    P. Pichat, C. Guillard, L. Amalric, A.-C. Renard, O. Plaidy, Sol. Energy Mater. Sol. Cells 38, 391 (1995)

    CAS  Article  Google Scholar 

  54. 54.

    X. Zhang, L. Lei, Appl. Surf. Sci. 254, 2406 (2008)

    CAS  Article  Google Scholar 

  55. 55.

    S. Si, C. Li, X. Wang, Q. Peng, Y. Li, Sensors Actuators B Chem. 119, 52 (2006)

    CAS  Article  Google Scholar 

  56. 56.

    W. Huang, M. Brigante, F. Wu, K. Hanna, G. Mailhot, Environ. Sci. Pollut. Res. 20, 39 (2013)

    CAS  Article  Google Scholar 

  57. 57.

    I. Muthuvel, M. Swaminathan, Sol. Energy Mater. Sol. Cells 92, 857 (2008)

    CAS  Article  Google Scholar 

  58. 58.

    Y. Liu, H. Liu, J. Ma, X. Wang, Appl. Catal. B Environ. 91, 284 (2009)

    CAS  Article  Google Scholar 

  59. 59.

    J.A. Herrera-Melián, A.J. Martín-Rodríguez, A. Ortega-Méndez, J. Araña, J.M. Doña-Rodríguez, J. Pérez-Peña, J. Environ. Manag. 105, 53 (2012)

    Article  Google Scholar 

  60. 60.

    L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C. Minero, D. Vione, J. Photochem. Photobiol. A Chem. 307–308, 99 (2015)

    Article  Google Scholar 

  61. 61.

    T.S. Anthonymuthu, E.M. Kenny, H. Bayır, Brain Res. 1640, 57 (2016)

    CAS  Article  Google Scholar 

  62. 62.

    E. Niki, Free Radic. Biol. Med. 47, 469 (2009)

    CAS  Article  Google Scholar 

  63. 63.

    Z. Cheng, Y. Li, Chem. Rev. 107, 2165 (2007)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DIEB, UNAL (QUIPU code 201010025976). The authors thank Claudia Rivera Cerecedo and Héctor Malagón Rivero from the Instituto de Fisiología at UNAM for donation of biological samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gilma Granados-Oliveros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Granados-Oliveros, G., Torres, E., Zambrano, M. et al. Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation. Res Chem Intermed 44, 3407–3424 (2018). https://doi.org/10.1007/s11164-018-3315-2

Download citation

Keywords

  • Hematite
  • Hydroxyl radicals
  • 2,4-DNP degradation
  • Lipid peroxidation
  • Visible light