Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3407–3424 | Cite as

Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation

  • Gilma Granados-Oliveros
  • Erika Torres
  • Marcela Zambrano
  • Antonio Nieto-Camacho
  • Virginia Gómez-Vidales


α-Fe2O3 microcrystals were produced for application as catalyst in different oxidation processes in both chemical and biological matrices. Hematite was produced by sol–gel method in situ with silica matrix and characterized by X-ray diffraction analysis, scanning electron microscopy with energy-dispersive X-ray spectrometry, and transmission electron microscopy. The ability of the catalyst to produce hydroxyl radicals (·OH) was evaluated by electron paramagnetic resonance measurements using 5,5-dimethyl- 1-pyrroline-N-oxide (DMPO) as spin trap. Characterization of the resulting DMPO-OH adduct established that α-Fe2O3 microcrystals could generate ·OH when Fenton chemistry was present. Additionally, the catalyst exhibited semiconducting properties, as the DMPO-OH signal was produced under visible-light irradiation in presence of O2 but without requiring H2O2. In a pollution control context, 2,4-dinitrophenol (2,4-DNP) degradation was used as probe reaction, with >99 % of this pollutant being removed in presence of H2O2 under visible light. NO 2 , NO 3 , hydroxylated compounds, and a carboxylic acid were identified as photoproducts, suggesting a degradation pathway. Finally, catalyst reactivity in biological matrices was evaluated by oxidative degradation of lipids, revealing that α-Fe2O3 is a good oxidative stress inducer, representing a new application for materials based on iron oxides.


Hematite Hydroxyl radicals 2,4-DNP degradation Lipid peroxidation Visible light 



This work was supported by DIEB, UNAL (QUIPU code 201010025976). The authors thank Claudia Rivera Cerecedo and Héctor Malagón Rivero from the Instituto de Fisiología at UNAM for donation of biological samples.

Supplementary material

11164_2018_3315_MOESM1_ESM.docx (151 kb)
Supplementary material 1 (DOCX 151 kb)


  1. 1.
    S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodríguez, Water Res. 36, 1034 (2002)CrossRefGoogle Scholar
  2. 2.
    J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Appl. Catal. B Environ. 98, 10 (2010)CrossRefGoogle Scholar
  3. 3.
    J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 36, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Wang, H. Liu, Z. Sun, J. Huag, Y. Liao, Int. J. Photoenergy 2012, 1 (2012)Google Scholar
  5. 5.
    W. Du, Y. Xu, Y. Wang, Langmuir 24, 175 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Sugrañez, J. Balbuena, M. Cruz-Yusta, F. Martín, J. Morales, L. Sánchez, Appl. Catal. B Environ. 165, 529 (2015)CrossRefGoogle Scholar
  7. 7.
    A.G. Joly, J.R. Williams, S.A. Chambers, G. Xiong, W.P. Hess, D.M. Laman, J. Appl. Phys. 99, 53521 (2006)CrossRefGoogle Scholar
  8. 8.
    J.H. Kennedy, K.W. Frese, J. Electrochem. Soc. 125, 709 (1978)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, W. Du, Y. Xu, Langmuir 25, 2895 (2009)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, Y. Niu, Y. Li, X. Hou, Y. Wang, R. Bai, J. Zhao, Mater. Lett. 99, 111 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Liu, K. Chen, J.-J. Shim, J. Huang, J. Saudi Chem. Soc. 19, 479 (2015)CrossRefGoogle Scholar
  12. 12.
    D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environ. Sci. 5, 6682 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Cheng, Y.P. He, Y.M. Miao, B.S. Zou, Y.G. Wang, T.H. Wang, X.T. Zhang, Z.L. Du, J. Phys. Chem. B 110, 7259 (2006)CrossRefGoogle Scholar
  14. 14.
    T. Meng, P. Xie, H. Qin, H. Liu, W. Hua, X. Li, Z. Ma, J. Mol. Catal. A Chem. 421, 109 (2016)CrossRefGoogle Scholar
  15. 15.
    J.-P. Jolivet, C. Chanéac, E. Tronc, Chem. Commun. 5, 477 (2004)CrossRefGoogle Scholar
  16. 16.
    L. Machala, J. Tuček, R. Zbořil, Chem. Mater. 23, 3255 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, V. Spasojevic, J. Magn. Magn. Mater. 321, 12 (2009)CrossRefGoogle Scholar
  18. 18.
    L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)CrossRefGoogle Scholar
  19. 19.
    L. Casas, A. Roig, E. Molins, J.M. Grenèche, J. Asenjo, J. Tejada, Appl. Phys. A 74, 591 (2002)CrossRefGoogle Scholar
  20. 20.
    A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Yang, H. Ma, J. Zhuang, X. Wang, Inorg. Chem. 50, 10143 (2011)CrossRefGoogle Scholar
  22. 22.
    Q. Xiang, G. Chen, T.-C. Lau, RSC Adv. 5, 52210 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Zhao, H.-S. Chen, K. Matras-Postolek, P. Yang, CrystEngComm 17, 7175 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, Adv. Mater. 19, 2324 (2007)CrossRefGoogle Scholar
  25. 25.
    G. Encheva, B. Samuneva, P. Djambaski, E. Kashchieva, D. Paneva, I. Mitov, J. Non. Cryst. Solids 345–346, 615 (2004)CrossRefGoogle Scholar
  26. 26.
    L. Machala, R. Zboril, A. Gedanken, J. Phys. Chem. B 111, 4003 (2007)CrossRefGoogle Scholar
  27. 27.
    R. Blasco, F. Castillo, Pestic. Biochem. Physiol. 58, 1 (1997)CrossRefGoogle Scholar
  28. 28.
    R. Belloli, E. Bolzacchini, L. Clerici, B. Rindone, G. Sesana, V. Librando, Environ. Eng. Sci. 23, 405 (2006)CrossRefGoogle Scholar
  29. 29.
    S.S. Shukla, K.L. Dorris, B.V. Chikkaveeraiah, J. Hazard. Mater. 164, 310 (2009)CrossRefGoogle Scholar
  30. 30.
    P. Zhou, J. Zhang, Y. Zhang, G. Zhang, W. Li, C. Wei, J. Liang, Y. Liu, S. Shu, J. Hazard. Mater. 344, 1209 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Dadban Shahamat, M. Sadeghi, A. Shahryari, N. Okhovat, F. Bahrami Asl, M.M. Baneshi, Desalin. Water Treat. 57, 20447 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Liu, H. Liu, J. Ma, X. Wang, Appl. Catal. B Environ. 91, 284 (2009)CrossRefGoogle Scholar
  33. 33.
    M.A. Quiroz, J.L. Sánchez-Salas, S. Reyna, E.R. Bandala, J.M. Peralta-Hernández, C.A. Martínez-Huitle, J. Hazard. Mater. 268, 6 (2014)CrossRefGoogle Scholar
  34. 34.
    Z. Guo, R. Feng, J. Li, Z. Zheng, Y. Zheng, J. Hazard. Mater. 158, 164 (2008)CrossRefGoogle Scholar
  35. 35.
    M.V. Bagal, B.J. Lele, P.R. Gogate, Ultrason. Sonochem. 20, 1217 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Myilsamy, M. Mahalakshmi, V. Murugesan, N. Subha, Appl. Surf. Sci. 342, 1 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Chen, Y. Liu, X. Xia, L. Wang, Appl. Surf. Sci. 407, 470 (2017)CrossRefGoogle Scholar
  38. 38.
    E.M. Seftel, M. Puscasu, M. Mertens, P. Cool, G. Carja, Catal. Today 252, 7 (2015)CrossRefGoogle Scholar
  39. 39.
    M.M. Gaschler, B.R. Stockwell, Biochem. Biophys. Res. Commun. 482, 419 (2017)CrossRefGoogle Scholar
  40. 40.
    A.A. Mirzaei, A.B. Babaei, M. Galavy, A. Youssefi, Fuel Process. Technol. 91, 335 (2010)CrossRefGoogle Scholar
  41. 41.
    G. Granados-Oliveros, V. Gomez-Vidales, A. Nieto-Camacho, J.A. Morales-Serna, J. Cardenas, M. Salmon, RSC Adv. 3, 937 (2013)CrossRefGoogle Scholar
  42. 42.
    G. Granados-Oliveros, E.A. Páez-Mozo, F.M. Ortega, C. Ferronato, J.M. Chovelon, Appl. Catal. B Environ. 89, 448 (2009)CrossRefGoogle Scholar
  43. 43.
    T. Lehóczki, É. Józsa, K. Ösz, J. Photochem. Photobiol. A Chem. 251, 63 (2013)CrossRefGoogle Scholar
  44. 44.
    R.F.P. Nogueira, M.C. Oliveira, W.C. Paterlini, Talanta 66, 86 (2005)CrossRefGoogle Scholar
  45. 45.
    A. Kiss, L. Juhász, G. Seprényi, K. Kupai, J. Kaszaki, Á. Végh, Br. J. Pharmacol. 160, 1263 (2010)CrossRefGoogle Scholar
  46. 46.
    T.A. Doane, W.R. Horwáth, Anal. Lett. 36, 2713 (2003)CrossRefGoogle Scholar
  47. 47.
    R.M. Cornell, U. Schwertmann, Iron Oxides (Wiley-VCH, New York, 2004), p. 365Google Scholar
  48. 48.
    C. Păcurariu, E.-A. Tăculescu (Moacă), R. Ianoş, O. Marinică, C.-V. Mihali, V. Socoliuc, Ceram. Int. 41, 1079 (2015)CrossRefGoogle Scholar
  49. 49.
    A.S.W. Li, C.F. Chignell, J. Biochem. Biophys. Methods 22, 83 (1991)CrossRefGoogle Scholar
  50. 50.
    S. Tero-Kubota, Y. Ikegami, T. Kurokawa, R. Sasaki, K. Sugioka, M. Nakano, Biochem. Biophys. Res. Commun. 108, 1025 (1982)CrossRefGoogle Scholar
  51. 51.
    K.K. Mothilal, J. Johnson Inbaraj, R. Gandhidasan, R. Murugesan, J. Photochem. Photobiol. A Chem. 162, 9 (2004)CrossRefGoogle Scholar
  52. 52.
    C. Hammond, M.M. Forde, M.H. Ab Rahim, A. Thetford, Q. He, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, N.F. Dummer, D.M. Murphy, A.F. Carley, S.H. Taylor, D.J. Willock, E.E. Stangland, J. Kang, H. Hagen, C.J. Kiely, G.J. Hutchings, Angew. Chem. Int. Ed. 51, 5129 (2012)CrossRefGoogle Scholar
  53. 53.
    P. Pichat, C. Guillard, L. Amalric, A.-C. Renard, O. Plaidy, Sol. Energy Mater. Sol. Cells 38, 391 (1995)CrossRefGoogle Scholar
  54. 54.
    X. Zhang, L. Lei, Appl. Surf. Sci. 254, 2406 (2008)CrossRefGoogle Scholar
  55. 55.
    S. Si, C. Li, X. Wang, Q. Peng, Y. Li, Sensors Actuators B Chem. 119, 52 (2006)CrossRefGoogle Scholar
  56. 56.
    W. Huang, M. Brigante, F. Wu, K. Hanna, G. Mailhot, Environ. Sci. Pollut. Res. 20, 39 (2013)CrossRefGoogle Scholar
  57. 57.
    I. Muthuvel, M. Swaminathan, Sol. Energy Mater. Sol. Cells 92, 857 (2008)CrossRefGoogle Scholar
  58. 58.
    Y. Liu, H. Liu, J. Ma, X. Wang, Appl. Catal. B Environ. 91, 284 (2009)CrossRefGoogle Scholar
  59. 59.
    J.A. Herrera-Melián, A.J. Martín-Rodríguez, A. Ortega-Méndez, J. Araña, J.M. Doña-Rodríguez, J. Pérez-Peña, J. Environ. Manag. 105, 53 (2012)CrossRefGoogle Scholar
  60. 60.
    L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C. Minero, D. Vione, J. Photochem. Photobiol. A Chem. 307–308, 99 (2015)CrossRefGoogle Scholar
  61. 61.
    T.S. Anthonymuthu, E.M. Kenny, H. Bayır, Brain Res. 1640, 57 (2016)CrossRefGoogle Scholar
  62. 62.
    E. Niki, Free Radic. Biol. Med. 47, 469 (2009)CrossRefGoogle Scholar
  63. 63.
    Z. Cheng, Y. Li, Chem. Rev. 107, 2165 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Gilma Granados-Oliveros
    • 1
  • Erika Torres
    • 2
  • Marcela Zambrano
    • 2
  • Antonio Nieto-Camacho
    • 3
  • Virginia Gómez-Vidales
    • 3
  1. 1.Nuevos Materiales Nano y Supramoleculares, Departamento de Química, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Facultad de Química AmbientalUniversidad Santo Tomás de AquinoBucaramangaColombia
  3. 3.Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico

Personalised recommendations