Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3325–3335 | Cite as

Polyfuran-based multi-walled carbon nanotubes and graphene nanocomposites as counter electrodes for dye-sensitized solar cells

  • Sadik Cogal
  • Sule Erten Ela
  • Abdulrahman Khalaf Ali
  • Gamze Celik Cogal
  • Matej Micusik
  • Maria Omastova
  • Aysegul Uygun Oksuz
Article
  • 124 Downloads

Abstract

The preparation of polyfuran–graphene (PFu/GR) and polyfuran–multi-walled carbon nanotube (PFu/MWCNT) nanocomposites was carried out via a plasma polymerization. The characterizations of the pure GR, MWCNTs and the nanocomposites coated with PFu were performed using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy analyses. Counter electrodes prepared using the nanocomposites were used in dye-sensitized solar cells (DSSCs), demonstrating an enhancement in cell performance. The maximum efficiency of the DSSC with the PFu/GR counter-electrode with a short-circuit photocurrent density of 32.26 mA/cm2 was 5.06%, which is much higher than that of the short-circuit photocurrent density of 14.11 mA/cm2 and efficiency of 2.13% in the cell using the GR counter electrode. This was attributed to the enhanced conductivity between the PFu-based counter electrode and the electrolyte.

Keywords

Polyfuran Graphene Carbon nanotube Plasma Dye-sensitized solar cells 

Notes

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK; Project No. 114M867) and by the bilateral Project SAS-TÜBİTAK JRP 2014/2. Work was partially supported by the Project VEGA 02/0149/14 (Slovakia). Sule Erten-Ela acknowledges the Alexander von Humboldt foundation and Turkish Academy of Sciences (TUBA).

References

  1. 1.
    B. O’Regan, M. Grätzel, Nature 353(6346), 737 (1991)CrossRefGoogle Scholar
  2. 2.
    S. Zhang, X. Yang, Y. Numata, L. Han, Energy Environ. Sci. 6(5), 1443 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Erten-Ela, Optoelectron. Adv. Mater. 14, 758 (2012)Google Scholar
  4. 4.
    S. Erten-Ela, A.C. Çakir, Energy Sources 37, 807 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-I. Nakamura, K. Murata, Sol. Energy Mater. Sol. Cells 79(4), 459 (2003)CrossRefGoogle Scholar
  6. 6.
    W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, ACS Appl. Mater. Interfaces 1(6), 1145 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Saranya, Md Rameez, A. Subramania, Eur. Polym. J. 66, 207 (2015)CrossRefGoogle Scholar
  8. 8.
    M.J. González-Tejera, E. Sánchez de la Blanca, I. Carrillo, Synth. Met. 158(5), 165 (2008)CrossRefGoogle Scholar
  9. 9.
    N. Ballav, M. Biswas, Polym. Int. 54(4), 725 (2005)CrossRefGoogle Scholar
  10. 10.
    N. Ballav, P.S. Sardar, S. Ghosh, M. Biswas, J. Mater. Sci. 41(10), 2959 (2006)CrossRefGoogle Scholar
  11. 11.
    P.S. Sardar, S. Ghosh, M. Biswas, N. Ballav, Polym. J. 40(12), 1199 (2008)CrossRefGoogle Scholar
  12. 12.
    R.M. McConnell, W.E. Godwin, S.E. Baker, K. Powell, M. Baskett, A. Morara, Int. J. Polym. Mater. 53(8), 697 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Gök, B. Sari, M. Talu, J. Polym. Sci. Part B Polym. Phys. 42(18), 3359 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Gök, B. Sari, M. Talu, J. Appl. Polym. Sci. 98(5), 2048 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Iijima, Nature 354, 56 (1991)CrossRefGoogle Scholar
  16. 16.
    M. Baghayeri, H. Veisi, H. Veisi, B. Maleki, H. Karimi-Maleh, H. Beitollahi, RSC Adv. 4, 49595 (2014)CrossRefGoogle Scholar
  17. 17.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  18. 18.
    Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan, H. Zhang, Adv. Energy Mater. 4, 1300574 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Wang, J. Dai, T. Yarlagadda, Langmuir 21(1), 9 (2005)CrossRefGoogle Scholar
  20. 20.
    B. Fan, X. Mei, K. Sun, J. Ouyang. Appl. Phys. Lett. 93(14), 143103 (2008)CrossRefGoogle Scholar
  21. 21.
    W. Lei, W. Si, Y. Xu, Z. Gu, Q. Hao, Microchim. Acta 181(7–8), 707 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M.L. Yola, V.K. Gupta, A.A. Ensafi, Ind. Eng. Chem. Res. 54(14), 3634 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 10(10), 1555 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Peng, Y. Wu, P. Zhu, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, J. Photochem. Photobiol. A Chem. 223(2–3), 97 (2011)CrossRefGoogle Scholar
  25. 25.
    P. Gemeiner, J. Kuliček, M. Mikula, M. Hatala, L. Švorc, L. Ľubomír, M.Mičušík Hlavata, M. Omastová, Synth. Met. 210, 323 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Luo, H.-J. Niu, W. Wu, C. Wang, X.-U. Bai, W. Wang, Solid State Sci. 14(1), 145 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Tiwari, R. Kumar, M. Prabaharan, R.R. Pandey, P. Kumari, A. Chaturvedi, A.K. Mishra, Polym. Adv. Technol. 21(9), 615 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Uygun, L. Oksuz, A.G. Yavuz, A. Gulece, S. Sen, Curr. Appl. Phys. 11(2), 250 (2011)CrossRefGoogle Scholar
  29. 29.
    T. Teslaru, I. Topala, M. Dobromir, V. Pohoata, L. Curecheriu, N. Dumitrascu, Mater. Chem. Phys. 169, 120 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Cogal, S. Erten Ela, G. Celik Cogal, M. Micusik, M. Omastova, A. Uygun Oksuz. Polym. Compos. (2016).  https://doi.org/10.1002/pc.23983
  31. 31.
    A. Gok, L. Oksuz, J. Macromol. Sci. Part A 44(10), 1095 (2007)CrossRefGoogle Scholar
  32. 32.
    M.C. Jobanputra, M.F. Durstock, S.J. Clarson, J. Appl. Polym. Sci. 87(3), 523 (2003)CrossRefGoogle Scholar
  33. 33.
    E. Singh, H.S. Nalwa, Sci. Adv. Mater. 7, 1863 (2015)CrossRefGoogle Scholar
  34. 34.
    M.J. González-Tejeraa, E. Sánchezde la Blanca, I. Carrillo, Synth. Met. 158, 165 (2008)CrossRefGoogle Scholar
  35. 35.
    M.S. Rahman, W.A. Hammed, R.B. Yahya, H.N.M.E. Mahmud, J. Polym. Res. 23, 192 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sadik Cogal
    • 1
  • Sule Erten Ela
    • 2
  • Abdulrahman Khalaf Ali
    • 2
    • 3
  • Gamze Celik Cogal
    • 4
  • Matej Micusik
    • 5
  • Maria Omastova
    • 5
  • Aysegul Uygun Oksuz
    • 4
  1. 1.Department of Polymer Engineering, Faculty of Engineering and ArchitectureMehmet Akif Ersoy UniversityBurdurTurkey
  2. 2.Solar Energy InstituteEge UniversityBornova, IzmirTurkey
  3. 3.Applied Sciences DepartmentUniversity of TechnologyBaghdadIraq
  4. 4.Department of Chemistry, Faculty of Arts and ScienceSuleyman Demirel UniversityIspartaTurkey
  5. 5.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations