Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3313–3323 | Cite as

Catalytic degradation of malachite green in aqueous solution by porous manganese oxide octahedral molecular sieve (OMS-2) nanorods

  • Maryam Hajnajafi
  • Alireza Khorshidi
  • Ali Ghanadzadeh Gilani
  • Behrooz Heidari


Preparation of porous manganese oxide octahedral molecular sieves (OMS-2) in presence of different inorganic acids including HF, HNO3, H3PO4, and glacial acetic acid as an organic alternative was investigated. The obtained OMS-2 samples were characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The OMS-2 sample obtained in presence of HNO3 acted as catalyst in degradation of malachite green (MG) at near-ambient temperature in aqueous solution in presence of NaIO4 as effective oxidant. Under mild reaction conditions, mineralization was completed within 10 min and the recovered catalyst retained activity during at least five successive runs.


Malachite green Porous manganese oxide OMS-2 Catalysis Degradation 



Financial support of this study through grant no. 134303\KM from the Caspian Sea Basin Research Center of the University of Guilan is gratefully acknowledged.

Supplementary material

11164_2018_3308_MOESM1_ESM.docx (528 kb)
Supplementary material 1 (DOCX 527 kb)


  1. 1.
    R.J. Ouellette, J.D. Rawn, Principles of Organic Chemistry (Wiley-VCH, New York, 2015)Google Scholar
  2. 2.
    T. Gessner, U. Mayer, Ref. Serv. Rev. 37, 425 (2012)Google Scholar
  3. 3.
    S. Srivastava, R. Sinha, D. Roy, Aquat. Toxicol. 66, 3 (2004)CrossRefGoogle Scholar
  4. 4.
    W.C. Andersen, S.B. Turnipseed, J.E. Roybal, J. Agric. Food Chem. 54, 13 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Culp, F. Beland, R. Heflich, R. Benson, L. Blankenship, P. Webb, P. Mellick, R. Trotter, S. Shelton, K.U. Greenlees, Mutat. Res. Fundam. Mol. M 506, 553 (2002)Google Scholar
  6. 6.
    S. Dong, Y. Cui, Y. Wang, Y. Li, L. Hu, J. Sun, J. Sun, Chem. Eng. J. 249, 102 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Dong, X. Ding, T. Guo, X. Yue, X. Han, J. Sun, Chem. Eng. J. 316, 778 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Yu, S. Dong, J. Zhao, X. Han, J. Wang, J. Sun, J. Alloys Compd. 677, 219 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Sharma, S. Mehta, S. Kansal, J. Alloys Compd. 699, 323 (2017)CrossRefGoogle Scholar
  10. 10.
    C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, D. Banerjee, Appl. Surf. Sci. 392, 540 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Panahian, N. Arsalani, J. Phys. Chem. A 121, 5614 (2017)CrossRefGoogle Scholar
  12. 12.
    G. Sharma, Z.A. ALOthman, A. Kumar, S. Sharma, S.K. Ponnusamy, M. Naushad, Nanotechnol. Environ. Eng. 2, 4 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Liang, Z. Jia, W. Zhang, W. Wang, L. Zhang, Mater. Des. 119, 244 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Helaïli, A. Boudjamaa, M. Kebir, K. Bachari, Environ. Sci. Pollut. Res. 24, 6481 (2017)CrossRefGoogle Scholar
  15. 15.
    N. Zada, I. Khan, K. Saeed, Sep. Sci. Technol. 52, 1477 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Parshetti, S. Kalme, G. Saratale, S. Govindwar, Acta Chim. Slov. 53, 4 (2006)Google Scholar
  17. 17.
    N. Daneshvar, A. Khataee, M. Rasoulifard, M. Pourhassan, J. Hazard. Mater. 143, 214 (2007)CrossRefGoogle Scholar
  18. 18.
    B. Hameed, T. Lee, J. Hazard. Mater. 164, 468 (2009)CrossRefGoogle Scholar
  19. 19.
    F. Chen, W. Ma, J. He, J. Zhao, J. Phys. Chem. A 106, 9485 (2002)CrossRefGoogle Scholar
  20. 20.
    L. Yun, Y. Li, C. Zhou, L. Lan, M. Zeng, M. Mao, H. Liu, X. Zhao, Appl. Catal. A Gen. 530, 1 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Meng, Y. Wang, Y. Wang, B. Chen, Z. Jing, G. Chen, P. Zhao, J. Org. Chem. 82, 6922 (2017)CrossRefGoogle Scholar
  22. 22.
    Z. Sihaib, F. Puleo, J. Garcia-Vargas, L. Retailleau, C. Descorme, L. Liotta, J. Valverde, S. Gil, A. Giroir-Fendler, Appl. Catal. B Environ. 209, 689 (2017)CrossRefGoogle Scholar
  23. 23.
    S.L. Suib, J. Mater. Chem. 18, 1623 (2008)CrossRefGoogle Scholar
  24. 24.
    A.R. Gandhe, J.S. Rebello, J. Figueiredo, J. Fernandes, Appl. Catal. B Environ. 72, 129 (2007)CrossRefGoogle Scholar
  25. 25.
    S.C. Kim, W.G. Shim, Appl. Catal. B Environ. 98, 180 (2010)CrossRefGoogle Scholar
  26. 26.
    N.N. Opembe, C.K. King’ondu, S.L. Suib, Catal. Lett. 142, 427 (2012)CrossRefGoogle Scholar
  27. 27.
    W.-N. Li, J. Yuan, S. Gomez-Mower, S. Sithambaram, S.L. Suib, J. Phys. Chem. B 110, 3066 (2006)CrossRefGoogle Scholar
  28. 28.
    M. Sun, B. Lan, T. Lin, G. Cheng, F. Ye, L. Yu, X. Cheng, X. Zheng, CrystEngComm 15, 7010 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Julien, M. Massot, C. Poinsignon, Spectrochim. Acta A 60, 689 (2004)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu, N. Wang, Chem. Eng. J. 236, 251 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Luo, L. Duan, B. Sun, M. Wei, X. Li, A. Xu, Appl. Catal. B Environ. 164, 92 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran
  2. 2.Department of Marine Sciences, Caspian Sea Basin Research CenterUniversity of GuilanRashtIran

Personalised recommendations