Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3293–3312 | Cite as

Kinetic and mechanistic study of micellar effects in ammonium metavanadate/NaNO2-triggered nitration of phenols in aqueous bisulfate and acetonitrile medium

  • N. Venkatesham
  • K. C. Rajanna
  • D. Keerthi Devi
  • P. Veerasomaiah
Article
  • 21 Downloads

Abstract

Ammonium metavanadate (AMV)/NaNO2-triggered nitration of phenols (Ar–OH) in aqueous KHSO4-acetonitrile medium is too sluggish, even at elevated temperature. However, addition of surfactant [sodium dodecyl sulfate (SDS) or Triton X-100 (TX-100)] remarkably accelerates the nitration rate in a concentration-dependent fashion. The reaction kinetics are first order in [AMV], [Ar–OH], and [NaNO2]. Addition of acrylamide or acrylonitrile to the reaction mixture does not result in polymerization, indicating absence of free-radical intermediates. Ultraviolet–visible (UV–Vis) spectroscopic studies of AMV with SDS and TX-100 revealed binding interactions of AMV with micelles. Scanning electron microscopy studies revealed formation of nanostructured micelles with SDS as well as TX-100. On the basis of these observations, the rate acceleration in micellar media can be explained based on formation of more reactive micelle-bound AMV species that partake in the reaction by triggering nitration.

Graphical Abstract

Keywords

Micellar catalysis Phenols Ammonium metavanadate Nitration NaNO2 

References

  1. 1.
    G. Booth, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2005)Google Scholar
  2. 2.
    K. Schofield, Aromatic Nitrations (Cambridge University Press, Cambridge, 1980)Google Scholar
  3. 3.
    G.A. Olah, R. Malhotra, S.C. Narang, Nitration: Methods and Mechanisms (VCH, New York, 1989)Google Scholar
  4. 4.
    G. Yan, M. Yanga, Org. Biomol. Chem. 11, 2554 (2013)CrossRefGoogle Scholar
  5. 5.
    R.J. Gillespie, J. Graham, E.D. Hughes, C.K. Ingold, E.R. Peeling, Nature 158, 480 (1946)CrossRefGoogle Scholar
  6. 6.
    E.G. Cox, G.A. Jeffery, M.R. Truter, Nature 162, 258 (1948)CrossRefGoogle Scholar
  7. 7.
    D. J. Millen. J. Chem. Soc. 2600 (1950)Google Scholar
  8. 8.
    D.R. Goddard, E.D. Hughes, C.K. Ingold, Nature 158, 480 (1946)CrossRefGoogle Scholar
  9. 9.
    D. R. Goddard, E.D. Hughes, C.K. Ingold, J. Chem. Soc. 2559 (1950)Google Scholar
  10. 10.
    E.D. Hughes, C.K. Ingold, R.I .Reed, J. Chem. Soc. 2400 (1950)Google Scholar
  11. 11.
    R.J. Gillespie, D.J. Millen, Q. Rev. (London) 2, 277 (1948)CrossRefGoogle Scholar
  12. 12.
    P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998)Google Scholar
  13. 13.
    P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35, 686 (2002)CrossRefGoogle Scholar
  14. 14.
    R.A. Sheldon, Green Chem. 9, 1273 (2007)CrossRefGoogle Scholar
  15. 15.
    J.H. Fendler, R.J. Fendler, Catalysis in Micellar and Micro-molecular Systems (Academic, New York, 1975)Google Scholar
  16. 16.
    G.L. Sorella, G. Strukul, A. Scarso, Green Chem. 17, 644 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Poliakoff, P. Licence, Nature 450, 810 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Cavarzan, A. Scarso, G. Strukul, Green Chem. 12, 790 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Ghosh, K. Sengupta, R. Saha, B. Saha, J. Mol. Liq. 198, 369 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Arias, L.G. RiO, J.C. Mejuto, P.R. Dafonte, J.S. Gaandara, J. Agric. Food Chem. 53, 7172 (2005)CrossRefGoogle Scholar
  21. 21.
    A. Xie, X. Zhou, L. Feng, X. Hu, W. Dong, Tetrahedron 70, 3514 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Ghosh, R. Saha, B. Saha, J. Ind. Eng. Chem. 20, 345 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Günter, V. Güther, H. Hess, A. Otto, O. Roidl, H. Roller, S. Sattelberger, Vanadium and Vanadium Compounds: in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2005)Google Scholar
  24. 24.
    G. Brauer, Ammonium metavanadate, in Handbook of Preparative Inorganic Chemistry, vol. 1, 2nd edn., ed. by G. Brauer (Academic, New York, 1963), p. 1272Google Scholar
  25. 25.
    R.H. Baker, H. Zimmerman, R.N. Maxson, Inorg. Synth. 3, 117 (1950)Google Scholar
  26. 26.
    F.A. Cotton, G Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, New York, 1999)Google Scholar
  27. 27.
    S.S. Sonar, A.H. Kategaonkar, M.N. Ware, C.H. Gill, B.B. Shingate, M.S. Shingare, Arkivoc 2009, 138 (2009)CrossRefGoogle Scholar
  28. 28.
    J.M. Stellman, Encyclopaedia of Occupational Health and Safety, vol. 3, 4th edn. (WHO, Geneva, 1998), p. 63Google Scholar
  29. 29.
    T. Garcia, B. Solsona, D.M. Murphy, K.L. Antcliff, S.H. Taylor, J. Catal. 229, 1 (2005)CrossRefGoogle Scholar
  30. 30.
    B.M. Reddy, K. Jeeva Ratnam, P. Saikia, J. Mol. Catal. A 252, 238 (2006)CrossRefGoogle Scholar
  31. 31.
    B.M. Reddy, K.N. Rao, G.K. Reddy, P. Bharali, J. Mol. Catal. A 253, 44 (2006)CrossRefGoogle Scholar
  32. 32.
    T. Radhika, S. Sugunan, Catal. Commun. 8, 150 (2007)CrossRefGoogle Scholar
  33. 33.
    H. Gómez-Bernal, L. Cedeño-Caero, A. Gutiérrez-Alejandre, Catal. Today 142, 227 (2008)CrossRefGoogle Scholar
  34. 34.
    T. Helena Puzanowaska, K. Ludmila, K. Joanna, M.L. Katarzyna, Anal. Sci. 2005(21), 1149 (2005)CrossRefGoogle Scholar
  35. 35.
    G.R. Jadhav, M.U. Shaikh, R.P. Kale, C.H. Gill, Chin. Chem. Lett. 20, 292 (2009)CrossRefGoogle Scholar
  36. 36.
    S.S. Sonar, A.H. Kategaonkar, M.N. Ware, C.H. Gill, B.B. Shingate, Shingare, Arkivoc 2, 138 (2009)Google Scholar
  37. 37.
    K.S. Niralwad, B.B. Shingate, M.S. Shingare, J. Heterocycl. Chem. 48, 742 (2011)CrossRefGoogle Scholar
  38. 38.
    S.A. Sadaphal, A.H. Kategaonkar, S.B. Sapkal, B.B. Shingate, C.H. Gill, M.S. Shingare, Bull. Catal. Soc. India 8, 131 (2009)Google Scholar
  39. 39.
    D.P. Riley, D.L. Fields, W. Rivers, Inorg. Chem. 30, 4191 (1991)CrossRefGoogle Scholar
  40. 40.
    D.L. Kamble, S.T. Nandibewoor, Int. Natl. J. Chem. Kinet. 28, 673 (1996)CrossRefGoogle Scholar
  41. 41.
    P. Sar, A. Ghosh, B. Saha, Res. Chem. Intermed. 41, 7775 (2015)CrossRefGoogle Scholar
  42. 42.
    P. Sar, A. Ghosh, S. Malik, B. Saha, Res. Chem. Intermed. 41, 10151 (2015)CrossRefGoogle Scholar
  43. 43.
    S. Glasstone, K.J. Laidier, H. Eyring, Theory of Rate Processes (McGraw Hill, New York, 1961)Google Scholar
  44. 44.
    K.J. Laidler, Chemical Kinetics (Pearson Education, Singapore, 2004)Google Scholar
  45. 45.
    K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution (VCH, New York, 1990)Google Scholar
  46. 46.
    W.A.Waters, J.S. Litter, J. Chem. Soc. 3014 (1959)Google Scholar
  47. 47.
    V.I.E. Bruyere, L.A.G. Rodenas, P.J. Morando, M.A. Blesa, J. Chem. Soc. Dalton Trans. 3593 (2001)Google Scholar
  48. 48.
    P.C. Wilkins, M.D. Johnson, A.A. Holder, D.C. Crans, Inorg. Chem. 45, 1471 (2006)CrossRefGoogle Scholar
  49. 49.
    R. Shankar, S.N. Joshi, Indian J. Chem. 1, 289 (1963)Google Scholar
  50. 50.
    S. Saccubai, M. Santappa, Indian J. Chem. 8, 533 (1970)Google Scholar
  51. 51.
    Z. Khan, P.S.S. Babu, Kabir-ud-Din, Carbohydr. Res. 339, 133 (2004)CrossRefGoogle Scholar
  52. 52.
    A. Kumar, R.N. Mehrotra, J. Org. Chem. 40, 1248 (1975)CrossRefGoogle Scholar
  53. 53.
    F. Basolo, R.G. Pearson, Mechanisms of inorganic Reactions—A Study of Metal Complexes in Solution, 2nd edn. (Wiley, New York, 1967)Google Scholar
  54. 54.
    J.H. Fendler, W.L. Hinze, J. Am. Chem. Soc. 103, 5439 (1981)CrossRefGoogle Scholar
  55. 55.
    J. van Stam, S. Depaemelaere, F.D. Schryver, J. Chem. Educ. 75, 93 (1998)CrossRefGoogle Scholar
  56. 56.
    F.M. Menger, Angew. Chem. Int. Ed. Engl. 30, 1086 (1991)CrossRefGoogle Scholar
  57. 57.
    A. Ghosh, R. Saha, B. Saha, J. Ind. Eng. Chem. 20, 345 (2014)CrossRefGoogle Scholar
  58. 58.
    S. Malik, D. Saha, M.H. Mondal, P. Sar, A. Ghosh, A.K. Mahali, B. Saha, J. Mol. Liq. 225, 207 (2017)CrossRefGoogle Scholar
  59. 59.
    A. Ghosh, K. Sengupta, R. Saha, B. Saha, J. Mol. Liq. 198, 369 (2017)CrossRefGoogle Scholar
  60. 60.
    H.A. Benesi, J.H. Hilderbrand, J. Am. Chem. Soc. 71, 2703 (1949)CrossRefGoogle Scholar
  61. 61.
    R.S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952)CrossRefGoogle Scholar
  62. 62.
    R.S. Mulliken, W.B. Person, Molecular Complexes (Wiley, New York, 1969)Google Scholar
  63. 63.
    M. Tamers, J. Yarwood, Spectroscopy and Structure of Molecular Complexes (Plenum, London, 1973), p. 221Google Scholar
  64. 64.
    J.H. Espenson, Chemical Kinetics and Reaction Mechanism (McGraw-Hill, New York, 1981)Google Scholar
  65. 65.
    J.E. Leffler, E. Grunwald, Rates and Equilibria of Organic Reactions (Wiley, New York, 1963)Google Scholar
  66. 66.
    H. Maskill, The Physical Basis of Organic Chemistry (Oxford University Press, Oxford, 1986)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia

Personalised recommendations