Skip to main content
Log in

Kinetic and mechanistic study of micellar effects in ammonium metavanadate/NaNO2-triggered nitration of phenols in aqueous bisulfate and acetonitrile medium

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ammonium metavanadate (AMV)/NaNO2-triggered nitration of phenols (Ar–OH) in aqueous KHSO4-acetonitrile medium is too sluggish, even at elevated temperature. However, addition of surfactant [sodium dodecyl sulfate (SDS) or Triton X-100 (TX-100)] remarkably accelerates the nitration rate in a concentration-dependent fashion. The reaction kinetics are first order in [AMV], [Ar–OH], and [NaNO2]. Addition of acrylamide or acrylonitrile to the reaction mixture does not result in polymerization, indicating absence of free-radical intermediates. Ultraviolet–visible (UV–Vis) spectroscopic studies of AMV with SDS and TX-100 revealed binding interactions of AMV with micelles. Scanning electron microscopy studies revealed formation of nanostructured micelles with SDS as well as TX-100. On the basis of these observations, the rate acceleration in micellar media can be explained based on formation of more reactive micelle-bound AMV species that partake in the reaction by triggering nitration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. G. Booth, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2005)

    Google Scholar 

  2. K. Schofield, Aromatic Nitrations (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  3. G.A. Olah, R. Malhotra, S.C. Narang, Nitration: Methods and Mechanisms (VCH, New York, 1989)

    Google Scholar 

  4. G. Yan, M. Yanga, Org. Biomol. Chem. 11, 2554 (2013)

    Article  CAS  Google Scholar 

  5. R.J. Gillespie, J. Graham, E.D. Hughes, C.K. Ingold, E.R. Peeling, Nature 158, 480 (1946)

    Article  CAS  Google Scholar 

  6. E.G. Cox, G.A. Jeffery, M.R. Truter, Nature 162, 258 (1948)

    Article  Google Scholar 

  7. D. J. Millen. J. Chem. Soc. 2600 (1950)

  8. D.R. Goddard, E.D. Hughes, C.K. Ingold, Nature 158, 480 (1946)

    Article  CAS  Google Scholar 

  9. D. R. Goddard, E.D. Hughes, C.K. Ingold, J. Chem. Soc. 2559 (1950)

  10. E.D. Hughes, C.K. Ingold, R.I .Reed, J. Chem. Soc. 2400 (1950)

  11. R.J. Gillespie, D.J. Millen, Q. Rev. (London) 2, 277 (1948)

    Article  CAS  Google Scholar 

  12. P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998)

    Google Scholar 

  13. P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35, 686 (2002)

    Article  CAS  Google Scholar 

  14. R.A. Sheldon, Green Chem. 9, 1273 (2007)

    Article  CAS  Google Scholar 

  15. J.H. Fendler, R.J. Fendler, Catalysis in Micellar and Micro-molecular Systems (Academic, New York, 1975)

    Google Scholar 

  16. G.L. Sorella, G. Strukul, A. Scarso, Green Chem. 17, 644 (2015)

    Article  Google Scholar 

  17. M. Poliakoff, P. Licence, Nature 450, 810 (2007)

    Article  CAS  Google Scholar 

  18. A. Cavarzan, A. Scarso, G. Strukul, Green Chem. 12, 790 (2010)

    Article  CAS  Google Scholar 

  19. A. Ghosh, K. Sengupta, R. Saha, B. Saha, J. Mol. Liq. 198, 369 (2014)

    Article  CAS  Google Scholar 

  20. M. Arias, L.G. RiO, J.C. Mejuto, P.R. Dafonte, J.S. Gaandara, J. Agric. Food Chem. 53, 7172 (2005)

    Article  CAS  Google Scholar 

  21. A. Xie, X. Zhou, L. Feng, X. Hu, W. Dong, Tetrahedron 70, 3514 (2014)

    Article  CAS  Google Scholar 

  22. A. Ghosh, R. Saha, B. Saha, J. Ind. Eng. Chem. 20, 345 (2014)

    Article  CAS  Google Scholar 

  23. B. Günter, V. Güther, H. Hess, A. Otto, O. Roidl, H. Roller, S. Sattelberger, Vanadium and Vanadium Compounds: in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2005)

    Google Scholar 

  24. G. Brauer, Ammonium metavanadate, in Handbook of Preparative Inorganic Chemistry, vol. 1, 2nd edn., ed. by G. Brauer (Academic, New York, 1963), p. 1272

    Google Scholar 

  25. R.H. Baker, H. Zimmerman, R.N. Maxson, Inorg. Synth. 3, 117 (1950)

    Google Scholar 

  26. F.A. Cotton, G Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, New York, 1999)

    Google Scholar 

  27. S.S. Sonar, A.H. Kategaonkar, M.N. Ware, C.H. Gill, B.B. Shingate, M.S. Shingare, Arkivoc 2009, 138 (2009)

    Article  Google Scholar 

  28. J.M. Stellman, Encyclopaedia of Occupational Health and Safety, vol. 3, 4th edn. (WHO, Geneva, 1998), p. 63

    Google Scholar 

  29. T. Garcia, B. Solsona, D.M. Murphy, K.L. Antcliff, S.H. Taylor, J. Catal. 229, 1 (2005)

    Article  CAS  Google Scholar 

  30. B.M. Reddy, K. Jeeva Ratnam, P. Saikia, J. Mol. Catal. A 252, 238 (2006)

    Article  CAS  Google Scholar 

  31. B.M. Reddy, K.N. Rao, G.K. Reddy, P. Bharali, J. Mol. Catal. A 253, 44 (2006)

    Article  CAS  Google Scholar 

  32. T. Radhika, S. Sugunan, Catal. Commun. 8, 150 (2007)

    Article  CAS  Google Scholar 

  33. H. Gómez-Bernal, L. Cedeño-Caero, A. Gutiérrez-Alejandre, Catal. Today 142, 227 (2008)

    Article  Google Scholar 

  34. T. Helena Puzanowaska, K. Ludmila, K. Joanna, M.L. Katarzyna, Anal. Sci. 2005(21), 1149 (2005)

    Article  Google Scholar 

  35. G.R. Jadhav, M.U. Shaikh, R.P. Kale, C.H. Gill, Chin. Chem. Lett. 20, 292 (2009)

    Article  CAS  Google Scholar 

  36. S.S. Sonar, A.H. Kategaonkar, M.N. Ware, C.H. Gill, B.B. Shingate, Shingare, Arkivoc 2, 138 (2009)

    Google Scholar 

  37. K.S. Niralwad, B.B. Shingate, M.S. Shingare, J. Heterocycl. Chem. 48, 742 (2011)

    Article  CAS  Google Scholar 

  38. S.A. Sadaphal, A.H. Kategaonkar, S.B. Sapkal, B.B. Shingate, C.H. Gill, M.S. Shingare, Bull. Catal. Soc. India 8, 131 (2009)

    Google Scholar 

  39. D.P. Riley, D.L. Fields, W. Rivers, Inorg. Chem. 30, 4191 (1991)

    Article  CAS  Google Scholar 

  40. D.L. Kamble, S.T. Nandibewoor, Int. Natl. J. Chem. Kinet. 28, 673 (1996)

    Article  CAS  Google Scholar 

  41. P. Sar, A. Ghosh, B. Saha, Res. Chem. Intermed. 41, 7775 (2015)

    Article  CAS  Google Scholar 

  42. P. Sar, A. Ghosh, S. Malik, B. Saha, Res. Chem. Intermed. 41, 10151 (2015)

    Article  CAS  Google Scholar 

  43. S. Glasstone, K.J. Laidier, H. Eyring, Theory of Rate Processes (McGraw Hill, New York, 1961)

    Google Scholar 

  44. K.J. Laidler, Chemical Kinetics (Pearson Education, Singapore, 2004)

    Google Scholar 

  45. K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution (VCH, New York, 1990)

    Google Scholar 

  46. W.A.Waters, J.S. Litter, J. Chem. Soc. 3014 (1959)

  47. V.I.E. Bruyere, L.A.G. Rodenas, P.J. Morando, M.A. Blesa, J. Chem. Soc. Dalton Trans. 3593 (2001)

  48. P.C. Wilkins, M.D. Johnson, A.A. Holder, D.C. Crans, Inorg. Chem. 45, 1471 (2006)

    Article  CAS  Google Scholar 

  49. R. Shankar, S.N. Joshi, Indian J. Chem. 1, 289 (1963)

    Google Scholar 

  50. S. Saccubai, M. Santappa, Indian J. Chem. 8, 533 (1970)

    CAS  Google Scholar 

  51. Z. Khan, P.S.S. Babu, Kabir-ud-Din, Carbohydr. Res. 339, 133 (2004)

    Article  CAS  Google Scholar 

  52. A. Kumar, R.N. Mehrotra, J. Org. Chem. 40, 1248 (1975)

    Article  CAS  Google Scholar 

  53. F. Basolo, R.G. Pearson, Mechanisms of inorganic Reactions—A Study of Metal Complexes in Solution, 2nd edn. (Wiley, New York, 1967)

    Google Scholar 

  54. J.H. Fendler, W.L. Hinze, J. Am. Chem. Soc. 103, 5439 (1981)

    Article  CAS  Google Scholar 

  55. J. van Stam, S. Depaemelaere, F.D. Schryver, J. Chem. Educ. 75, 93 (1998)

    Article  Google Scholar 

  56. F.M. Menger, Angew. Chem. Int. Ed. Engl. 30, 1086 (1991)

    Article  Google Scholar 

  57. A. Ghosh, R. Saha, B. Saha, J. Ind. Eng. Chem. 20, 345 (2014)

    Article  CAS  Google Scholar 

  58. S. Malik, D. Saha, M.H. Mondal, P. Sar, A. Ghosh, A.K. Mahali, B. Saha, J. Mol. Liq. 225, 207 (2017)

    Article  CAS  Google Scholar 

  59. A. Ghosh, K. Sengupta, R. Saha, B. Saha, J. Mol. Liq. 198, 369 (2017)

    Article  Google Scholar 

  60. H.A. Benesi, J.H. Hilderbrand, J. Am. Chem. Soc. 71, 2703 (1949)

    Article  CAS  Google Scholar 

  61. R.S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952)

    Article  CAS  Google Scholar 

  62. R.S. Mulliken, W.B. Person, Molecular Complexes (Wiley, New York, 1969)

    Google Scholar 

  63. M. Tamers, J. Yarwood, Spectroscopy and Structure of Molecular Complexes (Plenum, London, 1973), p. 221

    Google Scholar 

  64. J.H. Espenson, Chemical Kinetics and Reaction Mechanism (McGraw-Hill, New York, 1981)

    Google Scholar 

  65. J.E. Leffler, E. Grunwald, Rates and Equilibria of Organic Reactions (Wiley, New York, 1963)

    Google Scholar 

  66. H. Maskill, The Physical Basis of Organic Chemistry (Oxford University Press, Oxford, 1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Rajanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesham, N., Rajanna, K.C., Keerthi Devi, D. et al. Kinetic and mechanistic study of micellar effects in ammonium metavanadate/NaNO2-triggered nitration of phenols in aqueous bisulfate and acetonitrile medium. Res Chem Intermed 44, 3293–3312 (2018). https://doi.org/10.1007/s11164-018-3307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3307-2

Keywords

Navigation