Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3199–3209 | Cite as

Efficient and facile ‘on-solvent’ multicomponent synthesis of medicinally privileged pyrano[3,2-c]pyridine scaffold

  • Michail N. Elinson
  • Fedor V. Ryzhkov
  • Anatoly N. Vereshchagin
  • Alexander S. Goloveshkin
  • Ivan S. Bushmarinov
  • Mikhail P. Egorov
Article
  • 39 Downloads

Abstract

The new type of ‘on-solvent’ multicomponent reaction was found: transformation of benzaldehydes, malononitrile and 4–hydroxy-6-methylpyridin-2(1H)-one in the presence of sodium acetate as catalyst in a small amount of ethanol results in formation of substituted 2-amino-7-methyl-5-oxo-4-phenyl-5,6-dihydro-4H-pyrano[3,2-c]pyridine-3-carbonitriles in excellent 92–99% yields. This novel ‘one-pot’ process opens an efficient and convenient way to functionalize pyrano[3,2-c]pyridine systems, which are promising compounds for different biomedical applications.

Keywords

Aldehydes Malononitrile 4–Hydroxy-6-methylpyridin-2(1H)-one Pyrano[3,2-c]pyridines Multicomponent reactions Sodium acetate catalyst 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the Russian Science Foundation (grant no. 14-50-00126). The contribution of Center for molecular composition studies of INEOS RAS is also gratefully acknowledged.

References

  1. 1.
    L.F. Tietze, G. Brasche, K. Gericke, Domino Reactions in Organic Synthesis (Wiley-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  2. 2.
    R.C. Cioc, E. Ruijter, R.V. Orru, Green Chem. 16, 2958 (2014)CrossRefGoogle Scholar
  3. 3.
    P.A. Clarke, S. Santos, W.H.C. Martin, Green Chem. 9, 438 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Tanaka, Solvent-Free Organic Synthesis (Wiley-VCH, Weinheim, 2009)Google Scholar
  5. 5.
    G.A. Bowmaker, Chem. Commun. 49, 334 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Bräse (ed.), Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis Evaluation (RSC, Cambridge, 2015)Google Scholar
  7. 7.
    Y. Song, P. Zhan, Q.Z. Zhang, X.Y. Liu, Curr. Pharm. Des. 19, 1528 (2013)Google Scholar
  8. 8.
    I.O. Zhuravel, S.M. Kovalenko, A.V. Ivachthenko, K.V. Balakin, V.V. Kazmirchuk, Bioorg. Med. Chem. Lett. 15, 5483 (2005)CrossRefGoogle Scholar
  9. 9.
    H. El-Subbagh, S.M. Abu-Zaid, M.A. Mahran, F.A. Badria, A.M. Al-Obaid, J. Med. Chem. 43, 2915 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Lee, S.M. Chae, K.Y. Yi, N. Kim, C.H. Oh, Bull. Korean Chem. Soc. 26, 619 (205)Google Scholar
  11. 11.
    K. Tatsuta, T. Yamaguchi, Y. Tsuda, Y. Yamaguchi, N. Hattori, H. Nagai, S. Hosokawa, Tetrahedron Lett. 48, 4187 (2007)CrossRefGoogle Scholar
  12. 12.
    V. Magedov, M. Manpadi, M.A. Ogasawara, A.S. Dhawan, S. Rogelj, S. van Slambrouck, W.T.A. Steelant, N.M. Evdokimov, P.Y. Uglinskii, E.M. Elias, E.J. Knee, P. Tongwa, M.Y. Antipin, A.J. Kornienko, J Med Chem 51, 2561 (2008)CrossRefGoogle Scholar
  13. 13.
    I.S. Chen, S.J. Wu, I.L. Tsai, T.S. Wu, J.M. Pezzuto, M.C. Lu, H. Chai, N. Suh, C.M. Teng, J. Nat. Prod. 57, 1206 (1994)CrossRefGoogle Scholar
  14. 14.
    R.A. Mekheimer, N.H. Mohamed, K.U. Sadek, Bull. Chem. Soc. Jpn. 70, 1625 (1997)CrossRefGoogle Scholar
  15. 15.
    E.V. Stoyanov, I.C. Ivanov, D. Heber, Molecules 5, 19 (2000)CrossRefGoogle Scholar
  16. 16.
    X. Fan, D. Feng, Y. Qu, X. Zhang, J. Wang, P.M. Loiseau, G. Andrei, R. Snoeck, E. De Clercq, Biorg. Med. Chem. Lett. 20, 809 (2010)CrossRefGoogle Scholar
  17. 17.
    S.M. Baghbanian, RSC Adv. 4, 59397 (2014)CrossRefGoogle Scholar
  18. 18.
    A.-G. Esmayeel, A.-H. Mehraneh, Y. Asieh, S. Hadi, RSC Adv. 6, 55444 (2016)CrossRefGoogle Scholar
  19. 19.
    M.N. Elinson, R.F. Nasybullin, F.V. Ryzhkov, T.A. Zaimovskaya, G.I. Nikishin, Monatsh. Chem. 146, 631 (2015)CrossRefGoogle Scholar
  20. 20.
    M.N. Elinson, R.F. Nasybullin, F.V. Ryzhkov, M.P. Egorov, CR Chim. 17, 437 (2014)CrossRefGoogle Scholar
  21. 21.
    D.V. Demchuk, M.N. Elinson, G.I. Nikishin, Mendeleev Commun. 21, 224 (2011)CrossRefGoogle Scholar
  22. 22.
    A.N. Vereshchagin, M.N. Elinson, R.F. Nasybullin, F.V. Ryzhkov, S.I. Bobrovsky, I.S. Bushmarinov, M.P. Egorov, Helv. Chim. Acta 98, 1104 (2015)CrossRefGoogle Scholar
  23. 23.
    A.N. Vereshchagin, M.N. Elinson, F.V. Ryzhkov, R.F. Nasybullin, S.I. Bobrovsky, R.F. Nasybullin, A.S. Goloveshkin, M.P. Egorov, CR Chimie 18, 1344 (2015)CrossRefGoogle Scholar
  24. 24.
    A.A. Coelho, J. Appl. Crystallogr. 36, 86 (2003)CrossRefGoogle Scholar
  25. 25.
    Bruker, TOPAS 5.0 User Manual, Bruker AXS GmbH, Karlsruhe, Germany (2014)Google Scholar
  26. 26.
    D.N. Laikov, Chem. Phys. Lett. 416, 116 (2005)CrossRefGoogle Scholar
  27. 27.
    D.N. Laikov, Chem. Phys. Lett. 281, 151 (1997)CrossRefGoogle Scholar
  28. 28.
    V. Favre-Nicolin, R. Černý, J. Appl. Crystallogr. 35, 734 (2002)CrossRefGoogle Scholar
  29. 29.
    I.S. Bushmarinov, A.O. Dmitrienko, A.A. Korlyukov, M.Y. Antipin, J. Appl. Crystallogr. 45, 1187 (2012)CrossRefGoogle Scholar
  30. 30.
    A.O. Dmitrienko, I.S. Bushmarinov, J. Appl. Crystallogr. 48(2015), 1777 (2015)CrossRefGoogle Scholar
  31. 31.
    M.N. Elinson, A.N. Vereshchagin, S.K. Feducovich, T.A. Zaimovskaya, Z.A. Starikova, P.A. Belyakov, G.I. Nikishin, Tetrahedron Lett. 48, 6614 (2007)CrossRefGoogle Scholar
  32. 32.
    W.B. Liu, H.F. Jiang, S.F. Zhu, W. Wang, Tetrahedron 65, 7985 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Patai, Y. Israeli, J. Chem. Soc. 1960, 2025 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Michail N. Elinson
    • 1
  • Fedor V. Ryzhkov
    • 1
  • Anatoly N. Vereshchagin
    • 1
  • Alexander S. Goloveshkin
    • 2
  • Ivan S. Bushmarinov
    • 2
  • Mikhail P. Egorov
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryMoscowRussia
  2. 2.A. N. Nesmeyanov Organoelement Compounds InstituteMoscowRussia

Personalised recommendations