Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3151–3167 | Cite as

A facile synthesis of goethite-modified g-C3N4 composite for photocatalytic degradation of tylosin in an aqueous solution

  • Hao Dong
  • Xuetao Guo
  • Yongyuan Yin


The goethite/g-C3N4 photocatalyst was successfully synthesized by a simple and convenient method. The properties and structure of the as-prepared catalysts were characterized by a variety of analytical methods. The results indicated goethite was uniformly accumulated on the surface of g-C3N4. Furthermore, a novel binary goethite/g-C3N4 photocatalyst was successfully constructed by loading goethite into the g-C3N4 surface as an electron medium. The photodegradation efficiency of goethite/g-C3N4 composites for TYL was studied under simulated sunlight irradiation. The results show that the photodegradation efficiency of goethite/g-C3N4 composites on TYL is much higher than that of goethite and g-C3N4 under simulated sunlight irradiation. The content of the goethite in the composites was analyzed and compared under simulated solar irradiation to further improve the photocatalytic activity. In all as-synthesized composites, the goethite/g-C3N4 with 50 wt% of goethite have the highest photodegradation efficiency and can decompose almost all TYL within 30 min under simulated solar illumination. A sample of goethite/g-C3N4 also exhibited favorable stability and durability. It is a promising green and non-toxic photocatalyst that can be used to treat water contaminated with antibiotics.


Goethite g-C3N4 Tylosin Photocatalytic 



The study was financially supported by the China National Science Fund Program (No. 41503095), the China Postdoctoral Science Foundation funded project (No. 2016M601994) and the Initiative Funding Programs for Doctoral Research of Northwest A&F University (Z111021702).


  1. 1.
    S.A. Sassman, A.K. Sarmah, L.S. Lee, Environ. Toxicol. Chem. 26, 8 (2007)Google Scholar
  2. 2.
    X. Guo, C. Yang, Y. Wu, Z. Dang, Environ. Sci. Pollut. Res. 21, 4 (2014)Google Scholar
  3. 3.
    M.-O. Aust, F. Godlinski, G.R. Travis, X. Hao, T.A. McAllister, P. Leinweber, S. Thiele-Bruhn, Environ. Pollut. 156, 1243 (2008)CrossRefGoogle Scholar
  4. 4.
    S.R. Wegst-Uhrich, D.A.G. Navarro, L. Zimmerman, D.S. Aga, Chem. Cent. J. 8, 5 (2014)CrossRefGoogle Scholar
  5. 5.
    W.C. Li, M.H. Wong, Int. J. Environ. Sci. Technol. 12, 8 (2015)Google Scholar
  6. 6.
    Q.L. Chen, H. Li, X.Y. Zhou, Y. Zhao, J.Q. Su, X. Zhang, F.Y. Huang, Sci. Total Environ. 609, 966 (2017)CrossRefGoogle Scholar
  7. 7.
    V. Oravcova, M. Mihalcin, J. Zakova, L. Pospisilova, M. Masarikova, I. Literak The, Sci. Total Environ. 609, 633 (2017)CrossRefGoogle Scholar
  8. 8.
    A.C. Kolz, S.K. Ong, T.B. Moorman, Chemosphere 60, 2 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Zheng, Z. Wang, J. Zhao, S. Herbert, B. Xing, Environ. Pollut. 181, 60 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Lin, J. Zhang, H. Chen, J. Wang, W. Sun, X. Zhang, Y. Yang, Q. Wang, J. Ma, Sci. Total Environ. 607-608, 607 (2017)Google Scholar
  11. 11.
    L. Ji, Y. Wan, S. Zheng, D. Zhu, Environ. Sci. Technol. 45, 13 (2011)Google Scholar
  12. 12.
    S. Wang, H. Wang, Front. Environ. Sci. Eng. 9, 4 (2015)Google Scholar
  13. 13.
    R. Gothwal, T. Shashidhar, Clean Soil Air Water 43, 4 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Li, X. Nie, Y. Gao, T. An, Appl. Catal. B Environ. 180, 726 (2016)CrossRefGoogle Scholar
  15. 15.
    Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Appl. Catal. B Environ. 182, 115 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Torki, H. Faghihian, J. Photochem. Photobiol. A Chem. 338, 49 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Zhu, Y. Song, H. Ji, Y. Xu, Y. Song, J. Xia, S. Yin, Y. Li, H. Xu, Q. Zhang, H. Li, Chem. Eng. J. 271, 96 (2015)CrossRefGoogle Scholar
  18. 18.
    C.-Z. Li, Z.-B. Wang, X.-L. Sui, L.-M. Zhang, D.-M. Gu, RSC Adv. 6, 38 (2016)Google Scholar
  19. 19.
    X. She, J. Wu, H. Xu, Z. Mo, J. Lian, Y. Song, L. Liu, D. Du, H. Li, Appl. Catal. B Environ. 202, 112 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, F. Wang, Y. Zeng, C. Wang, Appl. Catal. B Environ. 190, 26 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Cheng, X. Fan, M. Wang, M. Li, J. Tian, L. Zhang, RSC Adv. 6, 23 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Mousavi, A. Habibi-Yangjeh, Mater. Chem. Phys. 163, 421 (2015)CrossRefGoogle Scholar
  23. 23.
    W.-J. Ong, L.K. Putri, L.-L. Tan, S.-P. Chai, S.-T. Yong, Appl. Catal. B Environ. 180, 530 (2016)CrossRefGoogle Scholar
  24. 24.
    G.-D. Shen, Y.-P. Pu, Y.-F. Cui, P.-P. Jing, Ceram. Int. 43, S664 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 482, 165 (2016)CrossRefGoogle Scholar
  26. 26.
    W. Li, C. Feng, S. Dai, J. Yue, F. Hua, H. Hou, Appl. Catal. B Environ. 168–169, 465 (2015)CrossRefGoogle Scholar
  27. 27.
    K.C. Christoforidis, T. Montini, E. Bontempi, S. Zafeiratos, J.J.D. Jaén, P. Fornasiero, Appl. Catal. B Environ. 187, 171 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Fan, C. Chen, Z. Tang, Y. Ni, C. Lu, Mater. Sci. Semicond. Process. 40, 439 (2015)CrossRefGoogle Scholar
  29. 29.
    Q. Liu, Y. Guo, Z. Chen, Z. Zhang, X. Fang, Appl. Catal. B Environ. 183, 231 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Guo, C. Yang, Z. Dang, Q. Zhang, Y. Li, Q. Meng, Chem. Eng. J. 223, 59 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Liu, T. Chen, R.L. Frost, Chemosphere 103, 1 (2014)CrossRefGoogle Scholar
  32. 32.
    K. Lin, J. Ding, H. Wang, X. Huang, J. Gan, Chemosphere 89, 7 (2012)CrossRefGoogle Scholar
  33. 33.
    W. Zhang, C. Hu, J. Tan, Z. Fan, F. Chi, Y. Sun, S. Ran, X. Liu, Y. Lv, NANO 11, 06 (2016)Google Scholar
  34. 34.
    A.M. Mesquita, I.R. Guimarães, G.M.M.d. Castro, M.A. Gonçalves, T.C. Ramalho, M.C. Guerreiro, Appl. Catal. B Environ. 192, (2016)Google Scholar
  35. 35.
    Y. Wang, J.B. Liang, X.D. Liao, L. Wang, T.C. Loh, J. Dai, H.Y. Wan, Ind. Eng. Chem. Res. 49, 8 (2010)Google Scholar
  36. 36.
    J. Yang, H. Chen, J. Gao, T. Yan, F. Zhou, S. Cui, W. Bi, Mater. Lett. 164, 183 (2016)CrossRefGoogle Scholar
  37. 37.
    X. Guo, H. Dong, C. Yang, Q. Zhang, C. Liao, F. Zha, L. Gao, Colloids Surf. A Physicochem. Eng. Asp. 502, 81 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Akhundi, A. Habibi-Yangjeh, Mater. Sci. Semicond. Process. 39, 162 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Yan, C. Zhou, P. Li, B. Chen, S. Zhang, X. Dong, F. Xi, J. Liu, Colloids Surf. A Physicochem. Eng. Asp. 508, 257 (2016)CrossRefGoogle Scholar
  40. 40.
    Y. Yi, G.-H. Lee, J.-C. Kim, H.-W. Shim, D.-W. Kim, Chem. Eng. J. 327, 297 (2017)CrossRefGoogle Scholar
  41. 41.
    X. Guo, J. Zhang, J. Ge, C. Yang, Z. Dang, S. Liu, L. Gao, RSC Adv. 5, 122 (2015)Google Scholar
  42. 42.
    X. Jia, R. Dai, Y. Sun, H. Song, X. Wu, J. Mater. Sci. Mater. Electron. 27, 4 (2015)Google Scholar
  43. 43.
    S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Colloids Surf. A Physicochem. Eng. Asp. 478, 71 (2015)CrossRefGoogle Scholar
  44. 44.
    S.P. Adhikari, H.R. Pant, J.H. Kim, H.J. Kim, C.H. Park, C.S. Kim, Colloids Surf. A Physicochem. Eng. Asp. 482, 477 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Appl. Catal. B Environ. 186, 77 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Wang, S. Cui, X. Yang, W. Bi, Talanta 132, 922 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Mustafa, S. Khan, M.I. Zaman, S.Y. Husain, Appl. Surf. Sci. 255, 21 (2009)CrossRefGoogle Scholar
  48. 48.
    D. Xiao, K. Dai, Y. Qu, Y. Yin, H. Chen, Appl. Surf. Sci. 358, 181 (2015)CrossRefGoogle Scholar
  49. 49.
    R. Cheng, L. Zhang, X. Fan, M. Wang, M. Li, J. Shi, Carbon 101, 62 (2016)CrossRefGoogle Scholar
  50. 50.
    G.T.S.T. da Silva, K.T.G. Carvalho, O.F. Lopes, C. Ribeiro, Appl. Catal. B Environ. 216, 70 (2017)CrossRefGoogle Scholar
  51. 51.
    H. Huang, K. Xiao, N. Tian, X. Du, Y. Zhang, Colloids Surf. A Physicochem. Eng. Asp. 511, 64 (2016)CrossRefGoogle Scholar
  52. 52.
    J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Nanoscale 8, 4 (2016)Google Scholar
  53. 53.
    J. Luo, G. Dong, Y. Zhu, Z. Yang, C. Wang, Appl. Catal. B Environ. 214, 46 (2017)CrossRefGoogle Scholar
  54. 54.
    Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Eng. J. 260, 117 (2015)CrossRefGoogle Scholar
  55. 55.
    X. Guo, B. Tu, J. Ge, C. Yang, X. Song, Z. Dang, J. Environ. Sci. China 43, 208 (2016)CrossRefGoogle Scholar
  56. 56.
    C. Chang, L. Zhu, Y. Fu, X. Chu, Chem. Eng. J. 233, 305 (2013)CrossRefGoogle Scholar
  57. 57.
    M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, J. Colloid Interface Sci. 480, 218 (2016)CrossRefGoogle Scholar
  58. 58.
    M. Mousavi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 465, 83 (2016)CrossRefGoogle Scholar
  59. 59.
    Y. Mameri, N. Debbache, M.E.M. Benacherine, N. Seraghni, T. Sehili, J. Photochem. Photobiol. A Chem. 315, 129 (2016)CrossRefGoogle Scholar
  60. 60.
    G. Liu, S. Liao, D. Zhu, L. Liu, D. Cheng, H. Zhou, Mater. Res. Bull. 46, 8 (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
  2. 2.School of Earth and EnvironmentAnhui University of Science and TechnologyHuainanChina
  3. 3.Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest ChinaMinistry of AgricultureYanglingPeople’s Republic of China

Personalised recommendations