Skip to main content
Log in

Effect of iron doping on SO2 and H2O resistance of honeycomb cordierite-based Mn–Ce/Al2O3 catalyst for NO removal at low temperature

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Honeycomb cordierite-based Mn–Ce/Al2O3 (Mn–Ce/Al2O3–C) and Fe–Mn–Ce/Al2O3 (Fe–Mn–Ce/Al2O3–C) catalysts were prepared by an impregnation method and investigated in low-temperature selective catalytic reduction (SCR) of NO with NH3 at 100 °C. The Fe–Mn–Ce/Al2O3–C catalyst exhibited not only higher catalytic activity, but also much better SO2 and H2O resistance in the presence of 30 ppm SO2 and/or 5 vol% H2O than Mn–Ce/Al2O3–C. After doping Fe, the NO conversion of Mn–Ce/Al2O3–C catalyst displayed an increasing trend from 79 to 84% in the absence of SO2 and H2O at 100 °C under a gas hour space velocity of 1667 h−1. The results of characterization indicated that addition of Fe was advantageous to increase BET surface area, pore volume and inhibit loss of surface Mn and Ce species. Additionally, it was helpful for generating higher concentration of Mn4+, more chemisorbed oxygen and more uniform dispersion of amorphous Mn and Ce in the surface of catalyst, which were beneficial to interact with reactants. Furthermore, in contrast to Mn–Ce/Al2O3–C, the SCR activity of Fe–Mn–Ce/Al2O3–C catalyst in the presence of H2O, SO2 and H2O and SO2 were 79, 75 and 64%, with the increase of 14, 18 and 19%, respectively. It is indicated that the addition of Fe could inhibit sulfate formation and thus enhance SO2 resistance. XPS results reveal that the doping of Fe into the ceria lattice led to some Ce4+ transferred into Ce3+ in order to maintain the electrical neutrality, thereby facilitating the reduction of Ce4+ → Ce3+ and the formation of oxygen vacancies. NH3 temperature-programmed desorption (TPD) results imply that the doping of Fe onto Mn–Ce/Al2O3–C can remarkably improve the distribution and concentration of acid sites. All the above factors contributed to the improvement of overall NH3 SCR performance of the Fe–Mn–Ce/Al2O3–C catalyst compared with that of the Mn–Ce/Al2O3–C catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Zhao, J. Xiang, L. Sun, S. Su, S. Hu, Energy Fuels 23(3), 1539 (2009)

    Article  CAS  Google Scholar 

  2. Z. Liu, J. Zhu, S. Zhang, L. Ma, S.I. Woo, Catal. Commun. 46(5), 90 (2014)

    CAS  Google Scholar 

  3. Z. Ma, H. Yang, L. Qian, J. Zheng, X. Zhang, Appl. Catal. A 427–428(10), 43 (2012)

    Article  Google Scholar 

  4. L. Li, L. Zhang, K. Ma, W. Zou, Y. Cao, Y. Xiong, C. Tang, L. Dong, Appl. Catal. B 207, 366 (2017)

    Article  CAS  Google Scholar 

  5. K. Min, E.D. Park, M.K. Ji, J.E. Yie, Appl. Catal. A 327(2), 261 (2007)

    Article  Google Scholar 

  6. R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Catal. Today 153(3–4), 84 (2010)

    Article  CAS  Google Scholar 

  7. S.T. Choo, S.D. Yim, I.S. Nam, S.W. Ham, J.B. Lee, Appl. Catal. B 44(3), 237 (2003)

    Article  CAS  Google Scholar 

  8. X. Tang, J. Hao, H. Yi, J. Li, Catal. Today 126(3), 406 (2005)

    Google Scholar 

  9. J.H. Song, X.L. Tang, H.H. Yi, P. Ning, K. Li, Q.F. Yu, D. He, Adv. Mater. Res. 219–220, 1472 (2011)

    Article  Google Scholar 

  10. Y.J. Kim, H.J. Kwon, I.S. Nam, W.C. Jin, J.K. Kil, H.J. Kim, M.S. Cha, G.K. Yeo, Catal. Today 151(3–4), 244 (2010)

    Article  CAS  Google Scholar 

  11. C. Tang, H. Zhang, L. Dong, Catal. Sci. Technol. 6(5), 1248 (2016)

    Article  CAS  Google Scholar 

  12. L. Yue, T. Gu, X. Weng, W. Yan, Z. Wu, H. Wang, J. Phys. Chem. A 116(31), 16582 (2012)

    Article  Google Scholar 

  13. F. Cao, J. Xiang, S. Su, P. Wang, S. Hu, L. Sun, Fuel Process. Technol. 135, 66 (2015)

    Article  CAS  Google Scholar 

  14. B. Murugan, A.V. Ramaswamy, D. Srinivas, C.S. Gopinath, V. Ramaswamy, Chem. Mater. 17(15), 3983 (2005)

    Article  CAS  Google Scholar 

  15. T.Y. Li, S.J. Chiang, B.J. Liaw, Y.Z. Chen, Appl. Catal. B 103(1–2), 143 (2011)

    Article  CAS  Google Scholar 

  16. S. Yang, C. Wang, J. Li, N. Yan, L. Ma, H. Chang, Appl. Catal. B 110(41), 71 (2011)

    Article  CAS  Google Scholar 

  17. C. Fan, S. Sheng, J. Xiang, P. Wang, H. Song, L. Sun, A. Zhang, Fuel 139, 232 (2015)

    Article  Google Scholar 

  18. G. Qi, R.T. Yang, Appl. Catal. B 44(3), 217 (2003)

    Article  CAS  Google Scholar 

  19. J.L. Williams, Catal. Today 69(1), 3 (2001)

    Article  CAS  Google Scholar 

  20. Z. Lei, L. Li, C. Yuan, X. Yao, C. Ge, G. Fei, D. Yu, C. Tang, D. Lin, Appl. Catal. B 165(18), 589 (2015)

    Google Scholar 

  21. S. Cai, H. Hu, H. Li, L. Shi, D. Zhang, Nanoscale 8(6), 3588 (2016)

    Article  CAS  Google Scholar 

  22. A. Khan, P.G. Smirniotis, J. Mol. Catal. A: Chem. 280(1–2), 43 (2008)

    Article  CAS  Google Scholar 

  23. W. Xu, H. He, Y. Yu, J. Phys. Chem. C 113(11), 4426 (2017)

    Article  Google Scholar 

  24. Y. Wang, C.Z. Ge, L. Zhan, C. Li, W. Qiao, L. Ling, Ind. Eng. Chem. Res. 51(36), 11667 (2012)

    Article  CAS  Google Scholar 

  25. J.R. González-Velasco, R. Ferret, R. López-Fonseca, M.A. Gutiérrez-Ortiz, Powder Technol. 153(1), 34 (2005)

    Article  Google Scholar 

  26. J. Han, J. Meeprasert, P. Maitarad, S. Nammuangruk, L. Shi, D. Zhang, J. Phys. Chem. C 120(3), 1523 (2016)

    Article  CAS  Google Scholar 

  27. X. Yao, T. Kong, S. Yu, L. Li, F. Yang, L. Dong, Appl. Surf. Sci. 402, 208 (2017)

    Article  CAS  Google Scholar 

  28. Z.H. Chen, X.H. Li, Q. Yang, H. Li, X. Gao, Y.B. Jiang, F.R. Wang, L.F. Wang, Acta Phys. Chim. Sin. 25(4), 601 (2009)

    Google Scholar 

  29. P. Venkataswamy, D. Jampaiah, K.N. Rao, B.M. Reddy, Appl. Catal. A 488, 1 (2014)

    Article  CAS  Google Scholar 

  30. X. Nie, X. Li, C. Du, Y. Huang, H. Du, J. Raman Spectrosc. 40(1), 76 (2009)

    Article  CAS  Google Scholar 

  31. L.J. France, Q. Yang, W. Li, Z. Chen, J. Guang, D. Guo, L. Wang, X. Li, Appl. Catal. B 206, 203 (2017)

    Article  CAS  Google Scholar 

  32. Z. Wu, R. Jin, H. Wang, Y. Liu, Catal. Commun. 10(6), 935 (2009)

    Article  CAS  Google Scholar 

  33. M. Romeo, K. Bak, J. El Fallah, F.L. Normand, L. Hilaire, Surf. Interface Anal. 20(6), 508 (1993)

    Article  CAS  Google Scholar 

  34. S. Ramana, B.G. Rao, P. Venkataswamy, A. Rangaswamy, B.M. Reddy, J. Mol. Catal. A: Chem. 415, 113 (2016)

    Article  CAS  Google Scholar 

  35. S. Watanabe, X. Ma, C. Song, J. Phys. Chem. C 113(32), 14249 (2009)

    Article  CAS  Google Scholar 

  36. C.R.A. Catlow, J. Chem. Soc., Faraday Trans. 86(8), 1167 (1990)

    Article  CAS  Google Scholar 

  37. T. Gu, Y. Liu, X. Weng, H. Wang, Z. Wu, Catal. Commun. 12(4), 310 (2011)

    Article  Google Scholar 

  38. D.A. Peña, B.S. Uphade, P.G. Smirniotis, J. Catal. 221(2), 421 (2004)

    Article  Google Scholar 

  39. A.M. Venezia, G.D. Carlo, G. Pantaleo, L.F. Liotta, G. Melaet, N. Kruse, Appl. Catal. B 88(3), 430 (2009)

    Article  CAS  Google Scholar 

  40. F. Kapteijn, L. Singoredjo, A. Andreini, J.A. Moulijn, Cheminform 3(2–3), 173 (1994)

    CAS  Google Scholar 

  41. X. Tang, J. Li, S. Liang, J. Hao, Appl. Catal. B 99(1), 156 (2010)

    Article  CAS  Google Scholar 

  42. Y. Xiong, C. Tang, X. Yao, L. Zhang, L. Li, X. Wang, Y. Deng, F. Gao, L. Dong, Appl. Catal. A 495(1), 206 (2015)

    Article  CAS  Google Scholar 

  43. D. Mukherjee, B.G. Rao, B.M. Reddy, Appl. Catal. B 197, 105 (2016)

    Article  CAS  Google Scholar 

  44. H.C. Luo, B.C. Huang, M.L. Fu, J.L. Wu, D.Q. Ye, Acta Phys. Chim. Sin. 28(9), 2175 (2012)

    CAS  Google Scholar 

  45. F. Liu, H. He, Y. Ding, C. Zhang, Appl. Catal. B 93(1), 3760 (2009)

    Google Scholar 

  46. L. Lietti, I. Nova, G. Ramis, L. Dall’Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal. 187(2), 419 (1999)

    Article  CAS  Google Scholar 

  47. T. Boningari, P.R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C.A. Mcdonald, P.G. Smirniotis, J. Catal. 325, 145 (2015)

    Article  CAS  Google Scholar 

  48. D.A. Peña, B.S. Uphade, E.P. Reddy, P.G. Smirniotis, Journal of Physical Chemistry B 108(28), 9927 (2004)

    Article  Google Scholar 

  49. J. Li, Y. Zhu, K. Rui, J. Hao, Appl. Catal. B 80(3), 202 (2008)

    Article  CAS  Google Scholar 

  50. L. Chen, J. Li, M. Ge, R. Zhu, Catal. Today 153(3), 77 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project is financially supported by the National High Technology Research and Development Program of China (2015AA03A401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cz., Zhao, Yg., Zhang, C. et al. Effect of iron doping on SO2 and H2O resistance of honeycomb cordierite-based Mn–Ce/Al2O3 catalyst for NO removal at low temperature. Res Chem Intermed 44, 3135–3150 (2018). https://doi.org/10.1007/s11164-018-3297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3297-0

Keywords

Navigation