Research on Chemical Intermediates

, Volume 44, Issue 5, pp 2999–3015 | Cite as

Design and synthesis of novel bis-hydroxychalcones with consideration of their biological activities

  • Roghayeh Sharifi Aliabadi
  • Nosrat. O. Mahmoodi
  • Hossain Ghafoori
  • Hossain Roohi
  • Vahideh pourghasem


In the present study, eight new substituted bis-hydroxychalcones for the first time were designed, synthesized, purified and fully characterized. Then their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The concentration of compounds to scavenge 50% of ABTS (IC50) values were calculated for all the synthesized compounds. IC50 values for 2,2-azinobis (3-ethylbenzothiazoline-sulfonate) assay (ABTS) were in the range of 0.130–0.39 mM. Synthesized compounds possessed an inhibitory effect on tyrosinase activity, too. All of the products were much more active than E and C vitamins. The high antioxidant activity of products could be due to the longer conjugated system which can stabilize the free radical by resonance through a longer system. The concentration of compounds to scavenge 50% of LDOPA (IC50) values were in the range of 0.2–0.6 mM for the tyrosinase inhibition screening Products 4a, 4c, 4d, 4e and 4g which have inhibitory properties comparable to kojic acid (KA). Molecular modeling studies have been performed to achieve insight into the binding mode of the synthesized compounds to the tyrosinase enzyme active site.


Tyrosinase enzyme Inhibitor Drug design Synthesis Bis-hydroxychalcones Molecular modeling 



This study was supported in part by the Research Committee of the University of Guilan.


  1. 1.
    X. Jian, L. Jing, Z. Xinqi, Y. Yanying, C. Shuwen, Food Chem. 221, 1530 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Xue, Z. Yinan, H. Jia-Liang, Z. Shuang, Z. Mao-Mao, C. Jie, Z. Zong-Ping, Food Chem. 197, 589 (2016)CrossRefGoogle Scholar
  3. 3.
    I. Kubo, I. Kinst-Hori, Tyrosinase inhibitors from cumin. J. Agric. Food Chem. 46, 5341 (1998)Google Scholar
  4. 4.
    P. Ruzza, P.A. Serra, D. Fabbri, M.A. Dettori, G. Rocchitta, G. Delogu, Eur. J. Med. Chem. 126, 1034 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Friedman, J. Agric. Food Chem. 44, 631 (1996)CrossRefGoogle Scholar
  6. 6.
    S.J. Bae, Y.M. Ha, Y.J. Park, J.Y. Park, Y.M. Song, T.K. Ha, P. Chun, H.R. Moon, H.Y. Chung, Eur. J. Med. Chem. 57, 383 (2012)CrossRefGoogle Scholar
  7. 7.
    A.M. Mayer, Phytochemistry 67, 2318 (2006)CrossRefGoogle Scholar
  8. 8.
    J. Elmar, D. Heinz, Biochem. J. 371, 515 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Kalyaanamoorthy, Y.P. Chen, Drug Discov. Today 16, 831 (2011)CrossRefGoogle Scholar
  10. 10.
    B.R. Chandrika, J. Subramanian, S.D. Sharma, Drug Discov. Today 14, 394 (2009)CrossRefGoogle Scholar
  11. 11.
    J.D. Durrant, J.A. McCammon, Curr. Opin. Pharmacol. 10, 770 (2010)CrossRefGoogle Scholar
  12. 12.
    K.H. Wang, R. Lin, F.L. Hsu, Y.H. Huang, H.C. Chang, C.Y. Huang, M.H. Lee, J. Ethnopharmacol. 106, 353 (2006)CrossRefGoogle Scholar
  13. 13.
    R. Kaur, S. Chaudhary, K. Kumar, M.K. Gupta, R.K. Rawal, Eur. J. Med. Chem. 132, 108 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Pan, X. Li, J. Jankovic, Int. J. Cancer 128, 2251 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Asanuma, I. Miyazaki, N. Ogawa, Neurotox. Res. 5, 165 (2003)CrossRefGoogle Scholar
  16. 16.
    Y.J. Zhu, H.T. Zhou, Y.H. Hu, J.Y. Tang, M.X. Su, Y.J. Guo, Q.X. Chen, Food Chem. 124, 298 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Choi, S.J. Park, J.G. Jee, Eur. J. Med. Chem. 106, 157 (2015)CrossRefGoogle Scholar
  18. 18.
    Z. Ashraf, M. Rafiq, S.Y. Seo, K.S. Kwon, M.M. Babar, N.U. Zaidi, Eur. J. Med. Chem. 98, 203 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Chimenti, R. Fioravanti, A. Bolasco, P. Chimenti, D. Secci, F. Rossi, M. Yanez, F. Orallo, F. Ortuso, S. Alcaro, J. Med. Chem. 52, 2818 (2009)CrossRefGoogle Scholar
  20. 20.
    T.S. Chang, Int. J. Mol. Sci. 10, 2440 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Mutahir, M. AsimKhan, I.U. Khan, M. Yar, M. Ashraf, S. Tariq, R.L. Ye, B.J. Zhou, Eur. J. Med. Chem. 134, 406 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Sharifi-Aliabadia, N.O. Mahmoodi, RSC Adv. 6, 85877 (2016)CrossRefGoogle Scholar
  23. 23.
    N.O. Mahmoodi, A. Ghavidast, N. Amirmahani, J. Photochem. Photobiol., B 162, 681 (2016)CrossRefGoogle Scholar
  24. 24.
    N.O. Mahmoodi, M. Mohammadi, M. Mamaghani, N. Montazeri, Res. Chem. Intermed. 43, 2641 (2016)CrossRefGoogle Scholar
  25. 25.
    N.O. Mahmoodi, M. Mohammadi, E. Biazar, Z. Kazeminejad, Phosphorus, Sulfur Silicon Relat. Elem. 192, 344 (2016)CrossRefGoogle Scholar
  26. 26.
    N.O. Mahmoodi, S. Ghodsi, Res. Chem. Intermed. 43, 661 (2017)CrossRefGoogle Scholar
  27. 27.
    N.O. Mahmoodi, S. Shoja, B. Sharifzadeh, M. Rassa, Med. Chem. Res. 23, 1207 (2013)CrossRefGoogle Scholar
  28. 28.
    N.O. Mahmoodi, J. Parvizi, B. Sharifzadeh, M. Rassa, Arch. Pharm. 346, 860 (2013)CrossRefGoogle Scholar
  29. 29.
    F. Ghanbari, N.O. Mahmoodi, J. Chin. Chem. Soc. 64, 80 (2017)CrossRefGoogle Scholar
  30. 30.
    P.C. Subhash, B.L. Pradeep, Tetrahedron Lett. 54, 4789 (2013)CrossRefGoogle Scholar
  31. 31.
    L. Jin, Y. Zhang, L. Yan, Y. Guo, L. Niu, Molecules 17, 9361 (2012)CrossRefGoogle Scholar
  32. 32.
    O.F. Vázquez-Vuelvas, R.A. Enríquez-Figueroa, H.G. Ortega, M.F. Alamo, A.P. Contreras, Acta Cryst. E 71, 161 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Hammuda, R. Shalaby, S. Rovida, D.E. Edmondson, C. Binda, A. Khalil, Eur. J. Med. Chem. 114, 162 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Li, N. Zhou, K. Luo, W. Zhang, X. Li, C. Wu, Int. J. Mol. Sci. 15, 15994 (2014)CrossRefGoogle Scholar
  35. 35.
    W.T. Ismaya, H.J. Rozeboom, A. Weijn, J.J. Mes, F. Fusetti, H.J. Wichers, Biochemistry 50, 5477 (2011)CrossRefGoogle Scholar
  36. 36.
    M. Hanwell, D. Curtis, D. Lonie, T. Vandermeersch, E. Zurek, G. Hutchison Avogadro: an open-source molecular builder and visualization tool. Version 1.1. 0. (2012)Google Scholar
  37. 37.
    M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, Gaussian 09, Revision A. 02 (Gaussian.Inc, Wallingford, 2009)Google Scholar
  38. 38.
    G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, J. Comput. Chem. 30, 2785 (2009)CrossRefGoogle Scholar
  39. 39.
    G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, J. Comput. Chem. 19, 1639 (1998)CrossRefGoogle Scholar
  40. 40.
    B. Honarparvar, T. Govender, G.E.M. Maguire, M.E.S. Soliman, H.G. Kruger, Chem. Rev. 114, 493 (2014)CrossRefGoogle Scholar
  41. 41.
    H. Park, J. Lee, S. Lee, Bioinformatics 65, 549 (2006)Google Scholar
  42. 42.
    E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, J. Comput. Chem. 25, 1605 (2004)CrossRefGoogle Scholar
  43. 43.
    D.S. Visualizer, Release 4.5. Accelrys Inc, San Diego, CA, USA (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Roghayeh Sharifi Aliabadi
    • 1
  • Nosrat. O. Mahmoodi
    • 1
  • Hossain Ghafoori
    • 2
  • Hossain Roohi
    • 1
  • Vahideh pourghasem
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran
  2. 2.Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations