Research on Chemical Intermediates

, Volume 44, Issue 3, pp 1441–1458 | Cite as

Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations

  • Wei Liu
  • Chenchen Zhao
  • Shutao Wang
  • Lin Niu
  • Yunli Wang
  • Shuxuan Liang
  • Zhe Cui
Article
  • 143 Downloads

Abstract

With increasing industrial development, heavy metal pollution, e.g., cadmium (Cd) pollution, is increasingly serious in soil and water environments. This study investigated the sorption performance of nano-montmorillonite (NMMT) for Cd ions. Adsorption experiments were carried out to examine the effects of the initial metal ion concentration (22.4–224 mg/L), pH (2.5–7.5), contact time (2–180 min) and temperature (15–40 °C). A simulated acid rain solution was prepared to study the desorption of Cd adsorbed on NMMT. After the adsorption or desorption process, the supernatant was analyzed using a flame atomic absorption spectrometry method. The Cd removal rate increased as the pH and contact time increased but decreased as the initial metal ion concentration increased. The maximum adsorption capacity was estimated to be 17.61 mg/g at a Cd2+ concentration of 22.4 mg/L. The sorption process can be described by both the Langmuir and Freundlich models, and the kinetic studies revealed that the pseudo-second-order model fit the experimental data. The Cd desorption rate when exposed to simulated acid rain was less than 1%. NMMT possesses a good adsorption capacity for Cd ions. Additionally, ion exchange was the main adsorption mechanism, but some precipitation or surface adsorption also occurred.

Keywords

Cadmium Adsorption Desorption Isotherm Kinetics Montmorillonite 

Notes

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (2016YFD0801003) and the Natural Science Foundation of China (No. 41501526).

Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    F.A. Pereira, K.S. Sousa, G.R. Cavalcanti, Int. J. Biol. Macromol. 61, 471–478 (2013)CrossRefGoogle Scholar
  2. 2.
    J.H. Chen, Y.J. Wang, D.M. Zhou, Y.X. Cui, S.Q. Wang, Y.C. Chen, Environ. Progr. Sustain. Energy 29(2), 233–241 (2009)CrossRefGoogle Scholar
  3. 3.
    K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Alex. Eng. J. 54(3), 757–767 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Zhao, T. Jiang, B. Du, Chemosphere 99, 41–48 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Zhu, C. Gao, Y.L. Wu, L.F. Sun, X.L. Huang, W. Ran, Q.R. Shen, Biores. Technol. 147, 378–386 (2013)CrossRefGoogle Scholar
  6. 6.
    H.B. Hadjltaief, A. Sdiri, W. Ltaief, P.D. Costa, M.E. Galvez, M.B. Zina, CR Chim. (2017). doi: 10.1016/j.crci.2017.01.009 Google Scholar
  7. 7.
    V. Masindi, W.M. Gitari, J. Clean. Prod. 112, 1077–1085 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Sdiri, M. Khairy, S. Bouaziz, S. El-Safty, Appl. Clay Sci. 126, 89–97 (2016)CrossRefGoogle Scholar
  9. 9.
    C. Chen, H.B. Liu, T.H. Chen, D. Chen, R.L. Frost, Appl. Clay Sci. 118, 239–247 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Li, J.D. Wang, X.J. Wang, J.F. Wang, Ind. Eng. Chem. Res. 51(18), 6520–6528 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Zhu, Q. Chen, Q. Zhou, Y.F. Xi, J.X. Zhu, H.P. He, Appl. Clay Sci. 123, 239–258 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Fernández-Nava, M. Ulmanu, I. Anger, E. Maranon, L. Castrillon, Water Air Soil Pollut. 215(1–4), 239–249 (2010)Google Scholar
  13. 13.
    D. Kołodyńska, J. Krukowska, P. Thomas, Chem. Eng. J. 307, 353–363 (2017)CrossRefGoogle Scholar
  14. 14.
    C.G. Lee, S. Lee, J.A. Park, C. Park, S.J. Lee, S.B. Kim, B. An, S.T. Yun, S.H. Lee, J.W. Choi, Chemosphere 166, 203–211 (2017)CrossRefGoogle Scholar
  15. 15.
    K.G. Bhattacharyya, S.S. Gupta, Adv. Coll. Interface. Sci. 140(2), 114–131 (2008)CrossRefGoogle Scholar
  16. 16.
    C. Piccirillo, S.I.A. Pereira, A.P.G.C. Marques, R.C. Pullar, D.M. Tobaldi, M.E. Pintado, P.M.L. Castro, J. Environ. Manag. 121, 87–95 (2013)CrossRefGoogle Scholar
  17. 17.
    K. Seifpanahi Shabani, F. Doulati Ardejani, K. Badii, M. Ebrahim Olya, Arab. J. Chem. 243, 201–207 (2013)Google Scholar
  18. 18.
    V. Masindi, W.M. Gitari, J. Environ. Chem. Eng. 3, 2416–2425 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.L. Zhao, X.Q. Wang, C. Zhao, X.G. Zhu, S.Y. Du, J. Colloid Interface Sci. 345(2), 154–159 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Günay, B. Ersoy, S. Dikmen, A. Evcin, Adsorption 19(2–4), 757–768 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Vinuth, H.S.B. Naik, K.C. Sekhar, J. Manjanna, B.M. Vinoda, Procedia Earth Planet. Sci. 11, 275–283 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Kohay, A. Izbitski, Y.G. Mishael, Environ. Sci. Technol. 49(15), 9280–9288 (2015)CrossRefGoogle Scholar
  23. 23.
    T.P. Chang, J.Y. Shih, K.M. Yang, T.C. Hsiao, J. Mater. Sc. 42(17), 7478–7487 (2007)CrossRefGoogle Scholar
  24. 24.
    P. Liu, L. Zhang, Sep. Purif. Technol. 58(1), 32–39 (2007)CrossRefGoogle Scholar
  25. 25.
    Z.Y. Wang, C. Wang, P.F. Wang, J. Qian, J. Hou, Y.H. Ao, Water Air Soil Pollut. 225(9), 2124 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Agrawal, K.K. Sahu, J. Hazard. Mater. 137, 915–924 (2006)CrossRefGoogle Scholar
  27. 27.
    V. Masindi, M.W. Gitari, H. Tutu, M. Debeer, J. Water Process Eng. 15, 2–17 (2017)CrossRefGoogle Scholar
  28. 28.
    V. Masindi, W.M. Gitari, H. Tutu, J. Water Reuse Desalin. 382, 391 (2016)Google Scholar
  29. 29.
    B.F. UrbanoF, B.L. Rivas, J. Chem. Technol. Biotechnol. 89(2), 249–258 (2014)CrossRefGoogle Scholar
  30. 30.
    V. Masindi, M.W. Gitari, H. Tutu, M. DeBeer, J. Water Process Eng. 8, 227–240 (2015)CrossRefGoogle Scholar
  31. 31.
    W.H. Liu, Y.Y. Li, Q.X. Zhao, Research on and application of modified bentonite in deactivating and repairing heavy metal-contaminated soil (China Environmental Science Press, Beijing, 2014)Google Scholar
  32. 32.
    G.L. Guo, Y. Zhang, C. Zhang, S.J. Wang, Z.G. Yan, F.S. Li, Geoderma 200–201, 108–113 (2013)CrossRefGoogle Scholar
  33. 33.
    J. Madejova, Vib. Spectrosc. 31, 1–10 (2003)CrossRefGoogle Scholar
  34. 34.
    A. Sdiri, T. Higashi, R. Chaabouni, F. Jamoussi, Water Air Soil Pollut. 223, 1191–1204 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Abbas, S. Kaddour, M. Trari, J. Ind. Eng. Chem. 20(3), 745–751 (2014)CrossRefGoogle Scholar
  36. 36.
    V. Masindi, W.M. Gitari, H. Tutu, Water Pract. Technol. 12, 186–201 (2017)CrossRefGoogle Scholar
  37. 37.
    D.Z. Wang, X. Jiang, W. Rao, J.Z. He, Ecol. Complex. 6(4), 432–437 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Wei Liu
    • 1
  • Chenchen Zhao
    • 1
  • Shutao Wang
    • 2
  • Lin Niu
    • 1
  • Yunli Wang
    • 1
  • Shuxuan Liang
    • 1
  • Zhe Cui
    • 1
  1. 1.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina
  2. 2.Land and Resources CollegeAgriculture University of HebeiBaodingChina

Personalised recommendations