Advertisement

Research on Chemical Intermediates

, Volume 43, Issue 3, pp 1829–1846 | Cite as

Kinetics and mechanism of producing 3,8-dimethyl-3H-imidazo[4,5-a]acridine-11-carbonitrile: a DFT investigation

  • Fatemeh Zonozi
  • S. Ali Beyramabadi
  • Mehdi Pordel
  • Ali Morsali
Article

Abstract

The derivatives of acridine play important roles as dyes, drugs, and antiseptics. Herein, we have investigated the kinetics and the mechanism of the formation of 3,8-dimethyl-3H-imidazo[4,5-a]acridine-11-carbonitrile as an imidazo-acridine derivative by using density functional theory. The kinetics and the mechanism of the reaction are investigated without and by considering catalytic effects of the OH. The proposed mechanisms involve three main steps. Firstly, a tautomerization reaction occurs via an intramolecular proton transfer. Then, the intramolecular cyclization reaction creates a new six-membered ring. The final step is an intramolecular condensation reaction, which results in formation of the acridine product. Barrier energy of the reaction was significantly decreased in the OH catalyzed pathway. In this proper pathway, the intramolecular cyclization is the rate-determining step of the reaction.

Keywords

Acridine DFT PCM Kinetics Mechanism Tautomerization 

References

  1. 1.
    R.B. Davis, L.C. Pizzini, J. Org. Chem. 25, 1884 (1960)CrossRefGoogle Scholar
  2. 2.
    R.B. Davis, J.D. Benigni, J. Org. Chem. 27, 1605 (1962)CrossRefGoogle Scholar
  3. 3.
    R.B. Davis, J.D. Benigni, J. Chem. Eng. Data 8, 578 (1963)CrossRefGoogle Scholar
  4. 4.
    R.B. Davis, J.D. Weber, J. Chem. Eng. Data 8, 580 (1963)CrossRefGoogle Scholar
  5. 5.
    Z. Wróbel, Pol. J. Chem. 72, 2384 (1998)Google Scholar
  6. 6.
    Z. Wróbel, Eur. J. Org. Chem. 3, 521 (2000)CrossRefGoogle Scholar
  7. 7.
    Z. Wróbel, Tetrahedron Lett. 38, 4913 (1997)CrossRefGoogle Scholar
  8. 8.
    Z. Wróbel, Tetrahedron 54, 2607 (1998)CrossRefGoogle Scholar
  9. 9.
    Z. Wróbel, Tetrahedron 57, 7899 (2001)CrossRefGoogle Scholar
  10. 10.
    R. Sahraei, M. Pordel, H. Behmadi, B. Razavi, J. Lumin. 136, 334 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Pordel, J. Chem. Res. 36, 595 (2012)CrossRefGoogle Scholar
  12. 12.
    V. Maroofi, M. Pordel, H. Chegini, Sh. Ramezani, J. Fluoresc. 25, 1235 (2015)CrossRefGoogle Scholar
  13. 13.
    L.R. Daghigh, M. Pordel, A. Davoodnia, J. Chem. Res. 38, 202 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Rahmani, M. Pordel, A. Davoodnia, Bull. Korean Chem. Soc. 35, 551 (2014)CrossRefGoogle Scholar
  15. 15.
    V. Pakjoo, M. Roshani, M. Pordel, T.H. Hesar, Arkivoc 9, 195 (2012)Google Scholar
  16. 16.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  17. 17.
    M.J. Frisch et al., Gaussian 03, Revision C.02 (Gaussian Inc., Pittsburgh, 2003)Google Scholar
  18. 18.
    J. Tomasi, R. Cammi, J. Comput. Chem. 16, 1449 (1995)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    S.A. Beyramabadi, H. Eshtiagh-Hosseini, M.R. Housaindokht, A. Morsali, Organometallics 27, 72 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Najafi Ardabili, A. Morsali, S.A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermediat. 41, 5389 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Bazian, S.A. Beyramabadi, A. Davoodnia, M. Pordel, M.R. Bozorgmehr, Res. Chem. Intermediat. 42, 6125 (2016)CrossRefGoogle Scholar
  23. 23.
    V. Galasso, Chem. Phys. Lett. 472, 237 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Steudel, Y. Steudel, J. Phys. Chem. A 113, 9920 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Wang, Res. Chem. Intermediat. 38, 2175 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fatemeh Zonozi
    • 1
  • S. Ali Beyramabadi
    • 1
  • Mehdi Pordel
    • 1
  • Ali Morsali
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations