Advertisement

Research on Chemical Intermediates

, Volume 43, Issue 3, pp 1813–1827 | Cite as

Synthesis and studies of the antifungal activity of 2-anilino-/2,3-dianilino-/2-phenoxy- and 2,3-diphenoxy-1,4-naphthoquinones

  • Elisa Leyva
  • Lluvia I. López
  • Ramón F. García de la Cruz
  • Claudia G. Espinosa-González
Article

Abstract

Several synthetic and natural naphthoquinone derivatives have been associated with antifungal activity. Candida albicans is a fungus that is known to exist in the normal human flora, but under certain conditions it can cause mild to fatal infections. Its pathogenicity has been associated with fungus conversion from cellular yeast to filamentous form YM. Inhibition of this process by several anilino-, dianilino-, phenoxy-, and diphenoxy-1,4-naphthoquinones was investigated in order to find some correlation between structure, redox properties and biological activity.

Keywords

1,4-Naphthoquinone derivatives Candida albicans Antifungal compounds Reduction potential 

Notes

Acknowledgments

This work was supported by CONACyT (Grant 155678). C.G.E.G. acknowledges financial support by CONACyT (Scholarship 219858-290917).

References

  1. 1.
    L.I. López, E. Leyva, R. García de la Cruz, Rev. Mex. Cienc. Farm. 42, 6 (2011)Google Scholar
  2. 2.
    N. El-Najjar, H. Gali-Muhtasib, R.A. Ketola, P. Vuorela, A. Urtti, H. Vuorela, Phytochem. Rev. 10, 353 (2011)CrossRefGoogle Scholar
  3. 3.
    S.E. Loredo-Carrillo, E. Leyva, Naftoquinonas metodologías de síntesis y propiedades fotofísicas (Verlag/Publicia, Berlin, 2015)Google Scholar
  4. 4.
    T. Tran, E. Saheba, A.V. Arcerio, V. Chavez, Q. Li, L.E. Martínez, T.P. Primm, Bioorg. Med. Chem. 12, 4809 (2004)CrossRefGoogle Scholar
  5. 5.
    G.J. Kapadia, M.A. Azuine, V. Balasubramanian, R. Sridhar, Pharmacol. Res. 43, 363 (2001)CrossRefGoogle Scholar
  6. 6.
    M.H. Khraiwesh, C.M. Lee, Y. Brandy, E.S. Akinboye, S. Berhe, G. Gittens, M.M. Abbas, F.R. Ampy, M. Ashraf, O. Bakare, Arch. Pharm. Res. 35, 27 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Ibis, A. Fatih Tuyun, Z. Ozsoy-Gunes, H. Bahar, M.V. Stasevych, R. Musyanovych, O. Komarovska-Porokhnyavets, V. Novikov, Eur. J. Med. Chem. 46, 5861 (2011)CrossRefGoogle Scholar
  8. 8.
    R.R. Kitagawa, C. Bonacorsi, L.M. da Fonseca, W. Vilegas, M.S.G. Raddi, Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 22, 53 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Kayashima, M. Mori, H. Yoshida, Y. Mizushina, K. Matsubara, Cancer Lett. 278, 34 (2009)CrossRefGoogle Scholar
  10. 10.
    N. Pradidphol, N. Kongkathip, P. Sittikul, N. Boonyalai, B. Kongkathip, Eur. J. Med. Chem. 49, 253 (2012)CrossRefGoogle Scholar
  11. 11.
    C.-K. Ryu, J.-Y. Shim, M.-J. Chae, I.-H. Choi, J.-Y. Han, O.-J. Jung, J.-Y. Lee, S.-H. Jeong, Eur. J. Med. Chem. 40, 438 (2005)CrossRefGoogle Scholar
  12. 12.
    V.K. Tandon, H.K. Maurya, M.K. Verma, R. Kumar, P.K. Shukla, Eur. J. Med. Chem. 45, 2418 (2010)CrossRefGoogle Scholar
  13. 13.
    A.L. Lourenco, P.A. Abreu, B. Leal, E.N. da Silva Jr., A.V. Pinto, M.C.F.R. Pinto, A.M.T. Souza, J.S. Novais, M.B. Paiva, L.M. Cabral, C.R. Rodrigues, V.F. Ferreira, H.C. Castro, Curr. Microbiol. 62, 684 (2011)CrossRefGoogle Scholar
  14. 14.
    V.K. Tandon, H.K. Maurya, N.N. Mishra, P.K. Shukla, Bioorg. Med. Chem. Lett. 21, 6398 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Sudbery, N. Gow, J. Berman, J. Trends Microbiol. 12, 317 (2004)CrossRefGoogle Scholar
  16. 16.
    A. Pugliese, D. Torre, F.M. Baccino, G. di Perri, C. Cantamessa, L. Gerbaudo, A. Saini, V. Vidotto, Cell Biochem. Funct. 18, 235 (2002)CrossRefGoogle Scholar
  17. 17.
    A. Mane, S. Gaikwad, S. Bembalkar, A. Risbud, J. Med. Microbiol. 61, 285 (2012)CrossRefGoogle Scholar
  18. 18.
    R. Faraji, M.A. Rahimi, F. Rezvanmadani, M. Hashemi, Afr. J. Microbiol. Res. 6, 2773 (2012)Google Scholar
  19. 19.
    M.E.L. Consolaro, T.A. Albertoni, A.E. Svidzinski, R.M. Peralta, Mycopathologia 159, 501 (2005)CrossRefGoogle Scholar
  20. 20.
    M.A. Pfaller, D.J. Diekema, Clin. Microbiol. Rev. 20, 133 (2007)CrossRefGoogle Scholar
  21. 21.
    C.A. Sable, K.M. Strohmaier, J.A. Chodakewitz, Annu. Rev. Med. 59, 361 (2008)CrossRefGoogle Scholar
  22. 22.
    F.C. Odds, Future Microbiol. 5, 67 (2010)CrossRefGoogle Scholar
  23. 23.
    A. MacCallum, Chapter 5. Candida albicans: new insights in infection, disease, and treatment, in New Insights in Medical Mycology, ed. by K. Kavanagh (Springer, Berlin, 2007)Google Scholar
  24. 24.
    S.K. Pitman, R.H. Drew, J.R. Perfect, Expert Opin. Emerg. Drugs 16, 559 (2011)CrossRefGoogle Scholar
  25. 25.
    S.P. Saville, A.L. Lazzell, C. Monteagudo, J.L. Lopez-Ribot, Eukaryot. Cell 2, 1053 (2003)CrossRefGoogle Scholar
  26. 26.
    M. Whiteway, U. Oberholzer, Curr. Opin. Microbiol. 7, 350 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Whiteway, C. Bachewich, Annu. Rev. Microbiol. 61, 529 (2007)CrossRefGoogle Scholar
  28. 28.
    E. Manavathu, C. Duncan, Q. Porte, M. Gunasekaran, Mycopathologia 135, 79 (1996)CrossRefGoogle Scholar
  29. 29.
    S.K. Biswas, K. Yokoyama, K. Kamei, K. Nishimura, M. Miyaji, Med. Mycol. 39, 283 (2001)CrossRefGoogle Scholar
  30. 30.
    P. McGeady, D.L. Wansley, D.A. Logan, J. Nat. Prod. 65, 953 (2002)CrossRefGoogle Scholar
  31. 31.
    C.A. Baker, K. Desrosiers, J.W. Dolan, Antimicrob. Agents Chemother. 46, 3617 (2002)CrossRefGoogle Scholar
  32. 32.
    T.G. Brayman, J.W. Wilks, Antimicrob. Agents Chemother. 47, 3305 (2003)CrossRefGoogle Scholar
  33. 33.
    M. Matsuoka, T. Takei, T. Kitao, Chem. Lett. 8, 627 (1979)CrossRefGoogle Scholar
  34. 34.
    J.W. Macleod, R.H.J. Thomson, Org. Chem. 25, 36 (1960)CrossRefGoogle Scholar
  35. 35.
    A.A. Kutyrev, Tetrahedron 47, 8043 (1991)CrossRefGoogle Scholar
  36. 36.
    Y.T. Pratt, J. Org. Chem. 27, 3905 (1962)CrossRefGoogle Scholar
  37. 37.
    E. Leyva, L.I. López, E. Moctezuma, H. de Lasa, Top. Catal. 49, 281 (2008)CrossRefGoogle Scholar
  38. 38.
    E. Leyva, L.I. López, S.E. Loredo-Carrillo, M. Rodríguez-Kessler, A. Montes-Rojas, J. Fluor. Chem. 132, 94 (2011)CrossRefGoogle Scholar
  39. 39.
    L.I. López, J.J. Vaquera-García, A. Sáenz-Galindo, S.Y. Silva-Belmares, Lett. Org. Chem. 11, 573 (2014)CrossRefGoogle Scholar
  40. 40.
    E. Leyva, S.J.S. Sobeck, S.E. Loredo-Carrillo, D.A. Magaldi-Lara, J. Mol. Struct. 1068, 1 (2014)CrossRefGoogle Scholar
  41. 41.
    E. Leyva, K.M. Baines, C.G. Espinosa-González, D.A. Magaldi-Lara, S.E. Loredo-Carrillo, T.A. De Luna-Méndez, L.I. López, J. Fluor. Chem. 180, 152 (2015)CrossRefGoogle Scholar
  42. 42.
    T. Win, S. Bittner, Tetrahedron Lett. 46, 3229 (2005)CrossRefGoogle Scholar
  43. 43.
    L.I. López, Doctorate thesis, University of San Luis Potosí (2008)Google Scholar
  44. 44.
    T. Win, S. Yerushalmi, S. Bittner, Synthesis 10, 1631 (2005)Google Scholar
  45. 45.
    E. Leyva, K.M. Baines, C.G. Espinosa-González, L.I. López, D.A. Magaldi-Lara, S. Leyva, Tetrahedron Lett. 56, 5248 (2015)CrossRefGoogle Scholar
  46. 46.
    H.-X. Chang, T.-C. Chou, N. Savaraj, L.F. Liu, C. Yu, C.C. Cheng, J. Med. Chem. 42, 405 (1999)CrossRefGoogle Scholar
  47. 47.
    M.V. Elorza, H. Rico, D. Gozalbo, R. Sentandreu, R. Antonie van Leeuwenhoek, J. Microbiol. Serol. 49, 457 (1983)Google Scholar
  48. 48.
    K.L. Lee, H.R. Buckley, C.C. Campbell, Sabouraudia 13, 148 (1975)CrossRefGoogle Scholar
  49. 49.
    M. Aguilar-Martínez, G. Cuevas, M. Jiménez-Estrada, I. González, B. Lotina-Hennsen, N.J. Macías-Ruvalcaba, J. Org. Chem. 64, 3684 (1999)CrossRefGoogle Scholar
  50. 50.
    S. Vega-Rodríguez, R. Jiménez-Cataño, E. Leyva, S.E. Loredo-Carrillo, J. Fluor. Chem. 145, 58 (2013)CrossRefGoogle Scholar
  51. 51.
    C. Frontana, I. González, J. Braz. Chem. Soc. 16, 299 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations