Skip to main content

Advertisement

Log in

Understanding the kinetics and mechanism of thermal cheletropic elimination of N2 from (2,5-dihydro-1H-pyrrol-1-ium-1-ylidene) amide using RRKM and ELF theories

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The cheletropic elimination process of N2 from (2,5-dihydro-1H-pyrrol-1-ium-1-ylidene) amide (C4H6N2) has been studied computationally using density functional theory, along with the M06-2X/aug-cc-pVTZ level of theory. The calculated energy profile has been supplemented with calculations of kinetic rate constants using transition state theory (TST) and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) theory. This elimination process takes place spontaneously with an activation energy around 33 kJ/mol. Pressure dependence of the rate constants revealed that the TST approximation breaks down and fall-off expression is necessary for the kinetic modeling. At temperatures ranging from 240 to 360 K and atmospheric pressure, the unimolecular rate constant is evaluated from RRKM theory as \(k_{{(240 - 360\,{\text{K}})}}^{{1.0{\text{atm}}}} = 1.0249 \times 10^{12} \times {\text{e}}^{{ - \frac{{33.11\;{\text{kJ}}/{\text{mol}}}}{RT}}} \,{\text{s}}^{ - 1}\). Bonding changes along the reaction coordinate have been studied using bonding evolution theory. Electron localization function topological analysis reveals that the cheletropic elimination is characterized topologically by four successive structural stability domains (SSDs). Breaking of C–N bonds (Rx = 0.1992 amu1/2 Bohr) and the other selected points separating the SSDs along the reaction coordinate occur in the vicinity of the transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.D. Becke, K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990)

    Article  CAS  Google Scholar 

  2. B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994)

    Article  CAS  Google Scholar 

  3. S. Berski, J. Andrés, B. Silvi, L.R. Domingo, The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the Diels-Alder reaction between ethylene and 1,3-butadiene. J. Phys. Chem. A 107, 6014–6024 (2003)

    Article  CAS  Google Scholar 

  4. V. Polo, J. Andrés, A joint study based on the electron localization function and catastrophe theory of the chameleonic and centauric models for the Cope rearrangement of 1,5-hexadiene and its cyano derivatives. J. Comput. Chem. 26, 1427–1437 (2005)

    Article  CAS  Google Scholar 

  5. V. Polo, J. Andrés, S. Berski, L.R. Domingo, B. Silvi, Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology. J. Phys. Chem. A 112, 7128–7136 (2008)

    Article  CAS  Google Scholar 

  6. S. Berski, J. Andrés, B. Silvi, L.R. Domingo, New findings on the Diels–Alder reactions. An analysis based on the bonding evolution theory. J. Phys. Chem. A 110, 13939–13947 (2006)

    Article  CAS  Google Scholar 

  7. M. Ríos-Gutiérrez, L.R. Domingo, P. Pérez, Understanding the high reactivity of carbonyl compounds towards nucleophilic carbenoid intermediates generated from carbene isocyanides. RSC Adv. 5, 84797–84809 (2015)

    Article  Google Scholar 

  8. L.R. Domingo, P. Pérez, J.A. Sáez, Understanding the regioselectivity in hetero Dielse–Alder reactions. An ELF analysis of the reaction between nitrosoethylene and 1-vinylpyrrolidine. Tetrahedron 69, 107–114 (2013)

    Article  CAS  Google Scholar 

  9. L.R. Domingo, P. Pérez, J.A. Sáez, Understanding C–C bond formation in polar reactions. An ELF analysis of the Friedel–Crafts reaction between indoles and nitroolefins. RSC Adv. 3, 7520–7528 (2013)

    Article  CAS  Google Scholar 

  10. L.R. Domingo, M.J. Aurella, P. Pérez, The mechanism of ionic Diels–Alder reactions. A DFT study of the oxa-Povarov reaction. RSC Adv. 4, 16567–16577 (2014)

    Article  CAS  Google Scholar 

  11. L.R. Domingo, A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 4, 32415–32428 (2014)

    Article  CAS  Google Scholar 

  12. L.R. Domingo, J.A. Sáez, Understanding the selectivity in the formation of δ-lactams vs. β-lactams in the Staudinger reactions of chloro-cyan-ketene with unsaturated imines. A DFT study. RSC Adv. 4, 58559–58566 (2014)

    Article  CAS  Google Scholar 

  13. L.R. Domingo, M. Ríos-Gutiérrez, P. Pérez, Unravelling the mechanism of the ketene-imine Staudinger reaction. An ELF quantum topological analysis. RSC Adv. 5, 37119–37129 (2015)

    Article  CAS  Google Scholar 

  14. L.R. Domingo, M.J. Aurella, P. Pérez, Understanding the polar mechanism of the ene reaction. A DFT study. Org. Biomol. Chem. 12, 7581–7590 (2014)

    Article  CAS  Google Scholar 

  15. L.R. Domingo, M. Ríos-Gutiérrez, P. Pérez, A DFT study of the ionic [2 + 2] cycloaddition reactions of keteniminium cations with terminal acetylenes. Tetrahedron 71, 2421–2427 (2015)

    Article  CAS  Google Scholar 

  16. P. Pérez, L.R. Domingo, A DFT study of inter- and intra-molecular aryne ene reactions. Eur. J. Org. Chem. 2015, 2826–2834 (2015)

    Article  Google Scholar 

  17. A.K. Nacereddine, C. Sobhi, A. Djerourou, M. Ríos-Gutiérrez, L.R. Domingoc, Non-classical CH/O hydrogen-bond determining the regio- and stereoselectivity in the [3 + 2] cycloaddition reaction of (Z)-C-phenyl-Nmethylnitrone with dimethyl 2-benzylidenecyclopropane-1,1-dicarboxylate. A topological electron-density study. RSC Adv. 5, 99299–99311 (2015)

    Article  CAS  Google Scholar 

  18. V. Polo, L.R. Domingo, J. Andrés, Better understanding of the ring-cleavage process of cyanocyclopropyl anionic derivatives. A theoretical study based on the electron localization function. J. Org. Chem. 71, 754–762 (2006)

    Article  CAS  Google Scholar 

  19. L.R. Domingo, E. Chamorro, P. Pérez, Understanding the mechanism of non-polar Diels–Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Org. Biomol. Chem. 8, 5495–5504 (2010)

    Article  CAS  Google Scholar 

  20. L.R. Domingo, Why Diels–Alder reactions are non-concerted processes. J. Chil. Chem. Soc. 59, 2615–2618 (2014)

    Article  Google Scholar 

  21. E.V. Anslyn, D.A. Dougherty, Modern Physical Organic Chemistry (University Science Books, Sausalito, 2006)

    Google Scholar 

  22. J.P. Buxton, C.J.S.M. Simpson, Thermal decarbonylations of unsaturated cyclic ketones: kinetics and dynamics. Chem. Phys. 105, 307–316 (1986)

    Article  CAS  Google Scholar 

  23. D.M. Birney, S. Ham, G.R. Unruh, Pericyclic and pseudopericyclic thermal cheletropic decarbonylations: When can a pericyclic reaction have a planar, pseudopericyclic transition state? J. Am. Chem. Soc. 119, 4509–4517 (1997)

    Article  CAS  Google Scholar 

  24. N.S. Isaacs, A.A.R. Laila, Rates of addition of sulphur dioxide to some 1,3-dienes. Tetrahedron Lett. 17, 715–716 (1976)

    Article  Google Scholar 

  25. D. Suárez, E. Iglesias, T.L. Sordo, J.A. Sordo, Mechanism of cheletropic reactions of 1,3-dienes with sulfur dioxide. J. Phys. Org. Chem. 9, 17–20 (1996)

    Article  Google Scholar 

  26. D.L. Lemal, S.D. McGregor, Dienes from 3-pyrrolines. A stereospecific deamination. J. Am. Chem. Soc. 88, 1335–1336 (1966)

    Article  CAS  Google Scholar 

  27. H. Eyring, The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935)

    Article  CAS  Google Scholar 

  28. D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996)

    Article  CAS  Google Scholar 

  29. A. Fernandez-Ramos, B.A. Ellingson, B.C. Garrett, D.G. Truhlar, Variational transition state theory with multidimensional tunneling. Rev. Comput. Chem. 23, 125–232 (2007)

    CAS  Google Scholar 

  30. W. Forst, Unimolecular rate theory test in thermal reactions. J. Phys. Chem. 76, 342–348 (1972)

    Article  CAS  Google Scholar 

  31. W. Forst, Unimolecular Reactions. A Concise Introduction (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  32. P.J. Robinson, K.A. Holbrook, Unimolecular Reactions (Wiley, New York, 1972)

    Google Scholar 

  33. K.A. Holbrook, M.J. Pilling, S.H. Robertson, Unimolecular Reactions, 2nd edn. (Wiley, Chichester, 1996)

    Google Scholar 

  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery-Jr., J.E. Peralta, F. Ogliaro, M. Bearpar, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02-SMP., in, Gaussian, Inc., Wallingford CT (2009)

  35. X. Li, M.J. Frisch, Energy-represented DIIS within a hybrid geometry optimization method. J. Chem. Theory Comput. 2, 835–839 (2006)

    Article  CAS  Google Scholar 

  36. Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and twelve other functionals. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  37. Y. Zhao, D.G. Truhlar, Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008)

    Article  CAS  Google Scholar 

  38. T.H. Dunning Jr., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  CAS  Google Scholar 

  39. H.P. Hratchian, H.B. Schlegel, Accurate reaction paths using a Hessian based predictor-corrector integrator. J. Chem. Phys. 120, 9918–9924 (2004)

    Article  CAS  Google Scholar 

  40. H.P. Hratchian, H.B. Schlegel, Theory and Applications of Computational Chemistry: The First 40 Years (Elsevier, Amsterdam, 2005)

    Google Scholar 

  41. H.P. Hratchian, H.B. Schlegel, Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J. Chem. Theory Comput. 1, 61–69 (2005)

    Article  CAS  Google Scholar 

  42. J.I. Steinfeld, J.S. Francisco, W.L. Hase, Chemical Kinetics and Dynamics, 2nd edn. (Prentice-Hall Inc, Upper Saddle River, 1999)

    Google Scholar 

  43. E. Wigner, Über das überschreiten von potentialschwellen bei chemischen reaktionen. Z. Phys. Chem. Abt. B 19, 203–216 (1932)

    Google Scholar 

  44. C. Eckart, The penetration of a potential barrier by electrons. Phys. Rev. 35, 1303–1309 (1930)

    Article  CAS  Google Scholar 

  45. F.M. Mourits, F.H.A. Rummens, A critical evaluation of Lennard-Jones and Stockmayer potential parameters and of some correlation methods. Can. J. Chem. 55, 3007–3020 (1977)

    Article  CAS  Google Scholar 

  46. S. Canneaux, F. Bohr, E. Henon, KiSThelP: kinetic and statistical thermodynamical package (2014)

  47. Computational chemistry comparison and benchmark dataBase, precomputed vibrational scaling factors. http://cccbdb.nist.gov/vibscalejust.asp

  48. X. Krokidis, S. Noury, B. Silvi, Characterization of elementary chemical processes by catastrophe theory. J. Phys. Chem. A 101, 7277–7282 (1997)

    Article  CAS  Google Scholar 

  49. L.R. Domingo, P. Pérez, A quantum chemical topological analysis of the C–C bond formation in organic reactions involving cationic species. Phys. Chem. Chem. Phys. 16, 14108–14115 (2014)

    Article  CAS  Google Scholar 

  50. A. Savin, B. Silvi, F. Colonna, Topological analysis of the electron localization function applied to delocalized bonds. Can. J. Chem. 74, 1088–1096 (1996)

    Article  CAS  Google Scholar 

  51. S. Noury, X. Krokidis, F. Fuster, B. Silvi, TopMod package (1997)

  52. F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities. Theor. Chem. Acc. 44, 129138 (1977)

    Google Scholar 

Download references

Acknowledgments

The authors thank anonymous referees for highly relevant comments. E. Zahedi expresses his gratitude to the Islamic Azad University, Shahrood Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Zahedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedi, E., Mozaffari, M., Shahsavar, F. et al. Understanding the kinetics and mechanism of thermal cheletropic elimination of N2 from (2,5-dihydro-1H-pyrrol-1-ium-1-ylidene) amide using RRKM and ELF theories. Res Chem Intermed 43, 1575–1590 (2017). https://doi.org/10.1007/s11164-016-2716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2716-3

Keywords

Navigation