Research on Chemical Intermediates

, Volume 43, Issue 3, pp 1395–1407 | Cite as

Enhancement of SrTiO3/BiPO4 heterostructure for simulated organic wastewater degradation under UV light irradiation

  • Qingwen Tian
  • Guigan Fang
  • Yingqiao Shi
  • Laibao Ding
  • Aixiang Pan
  • Long Liang
  • Naixu Li
  • Jiancheng Zhou


A novel SrTiO3/BiPO4 heterostructure with different amounts of SrTiO3 have been successfully prepared through the hydrothermal process. The photocatalysts were characterized by X-ray powder diffraction, UV–Vis diffuse reflectance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic performance was evaluated by degrading the methylene blue dye solution under UV light. Results showed that the samples displayed excellent photocatalytic degradation efficiency due to the highly efficient suppression of the recombination of electron–hole pairs. A possible mechanism of SrTiO3/BiPO4 heterojunctions was discussed. The research indicated that the as-prepared SrTiO3/BiPO4 heterogeneous photocatalyst can be used as an effective material for degrading industrial organic wastewater.


SrTiO3/BiPO4 Heterogeneous UV photocatalysis MB degradation 



This work was financially supported by the special Fund for Basic Scientific Research Business of Central Public Research Institutes of China (No. CAFYBB2014MA010).


  1. 1.
    A. Köhler, S. Hellweg, B.I. Escher, K. Hungerbühler, Environ. Sci. Technol. 40, 3395–3401 (2006)CrossRefGoogle Scholar
  2. 2.
    Y. Xiao, C.D. Araujo, C.C. Sze, D.C. Stuckey, J. Hazard. Mater. 286, 15–29 (2015)CrossRefGoogle Scholar
  3. 3.
    O. Ashrafi, L. Yerushalmi, F. Haghighat, J. Environ. Manag. 158, 146–157 (2015)CrossRefGoogle Scholar
  4. 4.
    N. Zabat, M. Abbessi, Res. Chem. Intermed. 41, 1691–1702 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Fiorentino, A. Gentili, M. Isidori, M. Lavorgna, A. Parrella, F. Temussi, J. Agric. Food Chem. 52, 5151–5154 (2004)CrossRefGoogle Scholar
  6. 6.
    C.S.D. Rodrigues, L.M. Madeira, R.A.R. Boaventura, Ind. Eng. Chem. Res. 53, 2412–2421 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Ramos, M.E. Suárez-Ojeda, J. Carrera, C. Ramos, M.E. Suárez-Ojeda, J. Carrera, Bioresour. Technol. 198, 844–851 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Qiao, W. Qi, H. Liu, J. Qu, Water Res. 52, 11–19 (2014)CrossRefGoogle Scholar
  9. 9.
    X. Li, G. Wang, Y. Cheng, Res. Chem. Intermed. 41, 3031–3039 (2015)CrossRefGoogle Scholar
  10. 10.
    X.Q. Dong, Y.Q. Wang, X.Q. Li, Y.Z. Yu, M.H. Zhang, Ind. Eng. Chem. Res. 53, 7723–7729 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Wu, L. Tao, J. Zhao, X. Yue, W. Deng, Y. Li, C. Wang, Res. Chem. Intermed. 42, 3609–3624 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Hou, H. Han, H. Zhuang, P. Xu, S. Jia, K. Li, Bioresour. Technol. 196, 721–725 (2015)CrossRefGoogle Scholar
  13. 13.
    R.S. Khnayzer, C.E. McCusker, B.S. Olaiya, F.N. Castellano, J. Am. Chem. Soc. 135, 14068–14070 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Kisch, Angew. Chem. Int. Edit. 52, 812–847 (2013)CrossRefGoogle Scholar
  15. 15.
    Q.W. Tian, L. Zhang, J.H. Liu, N.X. Li, Q.H. Ma, J.C. Zhou, Y.M. Sun, RSC Adv. 5, 734–739 (2015)CrossRefGoogle Scholar
  16. 16.
    J.H. Liu, L. Zhang, N.X. Li, Q.W. Tian, J.C. Zhou, Y.M. Sun, J. Mater. Chem. A 3, 706–712 (2015)CrossRefGoogle Scholar
  17. 17.
    S.L. Lei, J. Yu, S.K. Bao, G.S. Zeng, H.L. Liu, D.D. Wu, X.H. Tang, J.P. Zou, C.T. Au, Appl. Catal. A Gen. 493, 58–67 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  19. 19.
    H. Xu, S.X. Ouyang, L.Q. Liu, P. Reunchan, N. Umezawa, J.Y. Ye, J. Mater. Chem. A 2, 12642–12661 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920–6937 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Wang, L. Pan, J. Song, W. Mi, J. Zou, L. Wang, X. Zhang, J. Am. Chem. Soc. 137, 2975–2983 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Xu, Y. Xu, H. Li, J. Xia, J. Xiong, S. Yin, C. Huang, H. Wan, Dalton Trans. 41, 3387–3394 (2012)CrossRefGoogle Scholar
  23. 23.
    C. Pan, Y. Zhu, J. Mater. Chem. 21, 4235–4241 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Pan, Y. Zhu, Environ. Sci. Technol. 44, 5570–5574 (2010)CrossRefGoogle Scholar
  25. 25.
    N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, Appl. Surf. Sci. 351, 216–224 (2015)CrossRefGoogle Scholar
  26. 26.
    H.J. Dong, Z.Z. Cao, R.Y. Shao, Y. Xiao, W.Y. He, Y.F. Gao, J.R. Liu, RSC Adv. 5, 63930–63935 (2015)CrossRefGoogle Scholar
  27. 27.
    V.D. Nithya, L. Vasylechko, R. Kalai Selvan, RSC Adv. 4, 65184–65194 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, H. Fan, M. Li, H. Tian, Dalton Trans. 42, 13172–13178 (2013)CrossRefGoogle Scholar
  29. 29.
    D. Zhao, C. Chen, Y. Wang, H. Ji, W. Ma, L. Zang, J. Zhao, J. Phys. Chem. C 112, 5993–6001 (2008)CrossRefGoogle Scholar
  30. 30.
    Q. Zhang, H. Tian, N. Li, M. Chen, F. Teng, Cryst. Eng. Commun. 16, 8334–8339 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Qian, Z.T. Yang, C.Q. Wang, K. Wang, Q. Liu, D. Jiang, Y.T. Yan, K. Wang, J. Mater. Chem. A 3, 13671–13678 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Kudo, Y. Misek, Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  33. 33.
    T. Cao, Y. Li, C. Wang, C. Shao, Y. Liu, Langmuir 27, 2946–2952 (2011)CrossRefGoogle Scholar
  34. 34.
    E. Guo, L. Yin, J. Mater. Chem. A 3, 13390–13401 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Ran, J. Yu, M. Jaroniec, Green Chem. 13, 2708–2713 (2011)CrossRefGoogle Scholar
  36. 36.
    L. Qi, J. Yu, M. Jaroniec, Phys. Chem. Chem. Phys. 13, 8915–8923 (2011)CrossRefGoogle Scholar
  37. 37.
    Z.J. Sun, Q.D. Yue, J.S. Li, J. Xu, H.F. Zheng, P.W. Du, J. Mater. Chem. A 3, 10243–10247 (2015)CrossRefGoogle Scholar
  38. 38.
    H.L. Lin, H.F. Ye, S.F. Chen, Y. Chen, RSC Adv. 4, 10968–10974 (2014)CrossRefGoogle Scholar
  39. 39.
    P. Jing, J. Du, J. Wang, W. Lan, L. Pan, J. Li, J. Wei, D. Cao, X. Zhang, C. Zhao, Q. Liu, Nanoscale 7, 14738–14746 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Kumar, S. Tonda, A. Baruah, B. Kumar, V. Shanker, Dalton Trans. 43, 16105–16114 (2014)CrossRefGoogle Scholar
  41. 41.
    X.J. Zou, Y.Y. Dong, Z.B. Chen, D.P. Dong, D.X. Hu, X.Y. Li, Y.B. Cui, RSC Adv. (2015). doi: 10.1039/C5RA01607J Google Scholar
  42. 42.
    N.X. Li, H.C. Teng, L. Zhang, J.C. Zhou, M.C. Liu, RSC Adv. 5, 95394–95400 (2015)CrossRefGoogle Scholar
  43. 43.
    M.A. Butler, D.S. Ginley, J. Electrochem. Soc. 2, 228–232 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Qingwen Tian
    • 1
  • Guigan Fang
    • 1
  • Yingqiao Shi
    • 1
  • Laibao Ding
    • 1
  • Aixiang Pan
    • 1
  • Long Liang
    • 1
  • Naixu Li
    • 2
  • Jiancheng Zhou
    • 2
  1. 1.Institute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjingPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations