Research on Chemical Intermediates

, Volume 43, Issue 2, pp 1047–1061 | Cite as

EPR and DFT study of the ethylene reaction with O radicals on the surface of nanocrystalline MgO

  • Alexander M. Volodin
  • Vasilii I. Avdeev
  • Sergei E. Malykhin
  • Alexander F. Bedilo


Different radical forms of oxygen (O, O 2 and O 3 ) on the surface of nanocrystalline MgO are well known. It was earlier demonstrated that EPR-silent species with properties very similar to those of O radicals exist on the surface of magnesium oxide in addition to the O radicals observed by EPR. In this study we characterized the reactivity of these two types of O radicals in reaction with ethylene. It was demonstrated that this reaction yields different products for observable and unobservable O radicals. Conventional \({\text{O}}_{{3{\text{C}}}}^{ - }\) radicals generated by MgO illumination with UV light at room temperature in the presence of oxygen initiate hydrogen atom abstraction from ethylene to form secondary radicals H2C=C with hyperfine splitting A 1 = 59 G, A 2 = 6 G. The \({\text{O}}_{{4{\text{C}}}}^{ - }\) radicals not observed directly by EPR were synthesized by MgO illumination in the presence of oxygen at 163 K followed by evacuation at 203 K. They were shown to react with ethylene to form an addition product with two groups of two equivalent protons with isotropic hyperfine constants A 1 = 38 G and A 2 = 23 G. Such radicals were obtained for the first time by reaction of O radicals with ethylene on the MgO surface. Their concentration was approximately equal to the concentration of [\({\text{O}}_{{4{\text{C}}}}^{ - }\)·O2] complexes observed by EPR before the oxygen desorption. The structures of both radicals were simulated by DFT, and a good match between the experimental and computational results was obtained.


O radicals MgO DFT EPR Ethylene 



This work was supported in part by Russian Foundation for Basic Research (Grants 14-03-01110-a and 15-03-08070-a).


  1. 1.
    J.H. Lunsford, Catal. Rev. Sci. Eng. 8, 135 (1973)CrossRefGoogle Scholar
  2. 2.
    E. Garrone, A. Zecchina, F.S. Stone, J. Catal. 62, 396 (1980)CrossRefGoogle Scholar
  3. 3.
    M. Che, A.J. Tench, Adv. Catal. 31, 77 (1982)Google Scholar
  4. 4.
    M. Che, A.J. Tench, Adv. Catal. 32, 1 (1983)Google Scholar
  5. 5.
    M. Anpo, M. Che, B. Fubini, E. Garrone, E. Giamello, M.C. Paganini, Top. Catal. 8, 189 (1999)CrossRefGoogle Scholar
  6. 6.
    A.M. Volodin, Catal. Today 58, 103 (2000)CrossRefGoogle Scholar
  7. 7.
    M. Chiesa, E. Giamello, M.C. Paganini, Z. Sojka, D.M. Murphy, J. Chem. Phys. 116, 4266 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Chiesa, M.C. Paganini, E. Giamello, D.M. Murphy, Res. Chem. Intermed. 28, 205 (2002)CrossRefGoogle Scholar
  9. 9.
    C. Di Valentin, D. Ricci, G. Pacchioni, M. Chiesa, M.C. Paganini, E. Giamello, Surf. Sci. 521, 104 (2002)CrossRefGoogle Scholar
  10. 10.
    M. Chiesa, E. Giamello, C. Di Valentin, G. Pacchioni, Chem. Phys. Lett. 403, 124 (2005)CrossRefGoogle Scholar
  11. 11.
    A.F. Bedilo, M.A. Plotnikov, N.V. Mezentseva, A.M. Volodin, G.M. Zhidomirov, I.M. Rybkin, K.J. Klabunde, Phys. Chem. Chem. Phys. 7, 3059 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Sterrer, T. Berger, O. Diwald, E. Knozinger, A. Allouche, Top. Catal. 46, 111 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Kenzhin, A. Volodin, A. Bedilo, Res. Chem. Intermed. 39, 1789 (2013)CrossRefGoogle Scholar
  14. 14.
    A.M. Volodin, S.E. Malykhin, G.M. Zhidomirov, Kinet. Catal. 52, 605 (2011)CrossRefGoogle Scholar
  15. 15.
    K.J. Klabunde, J. Stark, O. Koper, C. Mohs, D.G. Park, S. Decker, Y. Jiang, I. Lagadic, D.J. Zhang, J. Phys. Chem. 100, 12142 (1996)CrossRefGoogle Scholar
  16. 16.
    R. Richards, W.F. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker, K.J. Klabunde, J. Am. Chem. Soc. 122, 4921 (2000)CrossRefGoogle Scholar
  17. 17.
    I.V. Mishakov, V.I. Zaikovskii, D.S. Heroux, A.F. Bedilo, V.V. Chesnokov, A.M. Volodin, I.N. Martyanov, S.V. Filimonova, V.N. Parmon, K.J. Klabunde, J. Phys. Chem. B 109, 6982 (2005)CrossRefGoogle Scholar
  18. 18.
    E.V. Ilyina, I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo, K.J. Klabunde, Microporous Mesoporous Mater. 175, 76 (2013)CrossRefGoogle Scholar
  19. 19.
    I.V. Mishakov, A.F. Bedilo, R.M. Richards, V.V. Chesnokov, A.M. Volodin, V.I. Zaikovskii, R.A. Buyanov, K.J. Klabunde, J. Catal. 206, 40 (2002)CrossRefGoogle Scholar
  20. 20.
    V.V. Chesnokov, A.F. Bedilo, D.S. Heroux, I.V. Mishakov, K.J. Klabunde, J. Catal. 218, 438 (2003)CrossRefGoogle Scholar
  21. 21.
    B.M. Choudary, R.S. Mulukutla, K.J. Klabunde, J. Am. Chem. Soc. 125, 2020 (2003)CrossRefGoogle Scholar
  22. 22.
    I.V. Mishakov, D.S. Heroux, V.V. Chesnokov, S.G. Koscheev, M.S. Mel’gunov, A.F. Bedilo, R.A. Buyanov, K.J. Klabunde, J. Catal. 229, 344 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Verziu, B. Cojocaru, J.C. Hu, R. Richards, C. Ciuculescu, P. Filip, V.I. Parvulescu, Green Chem. 10, 373 (2008)CrossRefGoogle Scholar
  24. 24.
    R.M. Richards, A.M. Volodin, A.F. Bedilo, K.J. Klabunde, Phys. Chem. Chem. Phys. 5, 4299 (2003)CrossRefGoogle Scholar
  25. 25.
    D.S. Heroux, A.M. Volodin, V.I. Zaikovski, V.V. Chesnokov, A.F. Bedilo, K.J. Klabunde, J. Phys. Chem. B 108, 3140 (2004)CrossRefGoogle Scholar
  26. 26.
    I.D.P.R. Moreira, J.C. Wojdel, F. Illas, M. Chiesa, E. Giamello, Chem. Phys. Lett. 462, 78 (2008)CrossRefGoogle Scholar
  27. 27.
    A.F. Bedilo, E.I. Shuvarakova, A.M. Volodin, E.V. Ilyina, I.V. Mishakov, A.A. Vedyagin, V.V. Chesnokov, D.S. Heroux, K.J. Klabunde, J. Phys. Chem. C 118, 13715 (2014)CrossRefGoogle Scholar
  28. 28.
    M.L. Bailly, G. Costentin, H. Lauron-Pernot, J.M. Krafft, M. Che, J. Phys. Chem. B 109, 2404 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Coluccia, L. Marchese, S. Lavagnino, M. Anpo, Spectrochim. Acta A 43, 1573 (1987)CrossRefGoogle Scholar
  30. 30.
    M.S. Mel’gunov, V.B. Fenelonov, E.A. Mel’gunova, A.F. Bedilo, K.J. Klabunde, J. Phys. Chem. B 107, 2427 (2003)CrossRefGoogle Scholar
  31. 31.
    C. Chizallet, G. Costentin, M. Che, F. Delbecq, P. Sautet, J. Am. Chem. Soc. 129, 6442 (2007)CrossRefGoogle Scholar
  32. 32.
    C. Chizallet, G. Costentin, M.C. Che, F. Delbecq, P. Sautet, J. Phys. Chem. B 110, 15878 (2006)CrossRefGoogle Scholar
  33. 33.
    N.U. Zhanpeisov, G.M. Zhidomirov, Mendeleev Commun. 2, 111 (1992)CrossRefGoogle Scholar
  34. 34.
    N.U. Zhanpeisov, A.G. Pelmenshchikov, G.M. Zhidomirov, Mendeleev Commun. 2, 148 (1992)CrossRefGoogle Scholar
  35. 35.
    M. Iwamoto, J. Hirata, K. Matsukami, S. Kagawa, J. Phys. Chem. 87, 903 (1983)CrossRefGoogle Scholar
  36. 36.
    H.F. Liu, R.S. Liu, K.Y. Liew, R.E. Johnson, J.H. Lunsford, J. Am. Chem. Soc. 106, 4117 (1984)CrossRefGoogle Scholar
  37. 37.
    T. Ito, J.X. Wang, C.H. Lin, J.H. Lunsford, J. Am. Chem. Soc. 107, 5062 (1985)CrossRefGoogle Scholar
  38. 38.
    G.I. Panov, K.A. Dubkov, E.V. Starokon, Catal. Today 117, 148 (2006)CrossRefGoogle Scholar
  39. 39.
    V.I. Avdeev, A.F. Bedilo, J. Phys. Chem. C 117, 14701 (2013)CrossRefGoogle Scholar
  40. 40.
    V.I. Avdeev, A.F. Bedilo, Res. Chem. Intermed. 42, 5237 (2016)CrossRefGoogle Scholar
  41. 41.
    C. Naccache, Chem. Phys. Lett. 11, 323 (1971)CrossRefGoogle Scholar
  42. 42.
    A.M. Volodin, A.E. Cherkashin, React. Kinet. Catal. Lett. 18, 243 (1981)CrossRefGoogle Scholar
  43. 43.
    C.H. Lin, T. Ito, J. Wang, J.H. Lunsford, J. Am. Chem. Soc. 109, 4808 (1987)CrossRefGoogle Scholar
  44. 44.
    Y.B. Taarit, M.C.R. Symons, A.J. Tench, J. Chem. Soc., Faraday Trans. 1(73), 1149 (1977)CrossRefGoogle Scholar
  45. 45.
    J.F. Hemidy, A.J. Tench, J. Catal. 68, 17 (1981)CrossRefGoogle Scholar
  46. 46.
    V.A. Shvets, V.B. Sapozhnikov, N.D. Chuvylkin, V.B. Kazansky, J. Catal. 52, 459 (1978)CrossRefGoogle Scholar
  47. 47.
    E.V. Starokon, M.V. Parfenov, L.V. Pirutko, I.E. Soshnikov, G.I. Panov, J. Catal. 309, 453 (2014)CrossRefGoogle Scholar
  48. 48.
    M.V. Parfenov, E.V. Starokon, L.V. Pirutko, G.I. Panov, J. Catal. 318, 14 (2014)CrossRefGoogle Scholar
  49. 49.
    E.V. Starokon, M.V. Parfenov, S.S. Arzumanov, L.V. Pirutko, A.G. Stepanov, G.I. Panov, J. Catal. 300, 47 (2013)CrossRefGoogle Scholar
  50. 50.
    K. Kwapien, J. Paier, J. Sauer, M. Geske, U. Zavyalova, R. Horn, P. Schwach, A. Trunschke, R. Schloegl, Angew. Chem. Int. Ed. 53, 8774 (2014)CrossRefGoogle Scholar
  51. 51.
    G. Pacchioni, H. Freund, Chem. Rev. 113, 4035 (2013)CrossRefGoogle Scholar
  52. 52.
    G. Preda, G. Pacchioni, M. Chiesa, E. Giamello, J. Phys. Chem. C 112, 19568 (2008)CrossRefGoogle Scholar
  53. 53.
    N.U. Zhanpeisov, G.M. Zhidomirov, I.V. Yudanov, K.J. Klabunde, J. Phys. Chem. 98, 10032 (1994)CrossRefGoogle Scholar
  54. 54.
    G.M. Zhidomirov, N.U. Zhanpeisov, Catal. Today 13, 517 (1992)CrossRefGoogle Scholar
  55. 55.
    S.E. Malykhin, A.M. Volodin, A.F. Bedilo, G.M. Zhidomirov, J. Phys. Chem. C 113, 10350 (2009)CrossRefGoogle Scholar
  56. 56.
    A. Gonchar, J. Lian, T. Risse, H. Freund, C. Di Valentin, G. Pacchioni, Top. Catal. 58, 811 (2015)CrossRefGoogle Scholar
  57. 57.
    V.A. Bolshov, A.M. Volodin, G.M. Zhidomirov, A.A. Shubin, A.F. Bedilo, J. Phys. Chem. 98, 7551 (1994)CrossRefGoogle Scholar
  58. 58.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford CT (2009)Google Scholar
  59. 59.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  60. 60.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  61. 61.
    L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 123, 124107 (2005)CrossRefGoogle Scholar
  62. 62.
    A.S. Barnard, P. Zapol, L.A. Curtiss, Surf. Sci. 582, 173 (2005)CrossRefGoogle Scholar
  63. 63.
    P.C. Redfern, P. Zapol, M. Sternberg, S.P. Adiga, S.A. Zygmunt, L.A. Curtiss, J. Phys. Chem. B 110, 8363 (2006)CrossRefGoogle Scholar
  64. 64.
    S. Niu, M.B. Hall, Chem. Rev. 100, 353 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alexander M. Volodin
    • 1
  • Vasilii I. Avdeev
    • 1
  • Sergei E. Malykhin
    • 1
  • Alexander F. Bedilo
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.Novosibirsk Institute of TechnologyMoscow State University of Design and Technology BranchNovosibirskRussia

Personalised recommendations