Research on Chemical Intermediates

, Volume 43, Issue 2, pp 885–899 | Cite as

Effects of lutetium doping on the X-ray-excited luminescence properties of the tungstate Zn1−x Lu x WO4

  • H. Ait Ahsaine
  • M. Zbair
  • M. Ezahri
  • A. Benlhachemi
  • B. Bakiz
  • F. Guinneton
  • J.-R. Gavarri


Polycrystalline samples in the lutetium-doped zinc tungstate system Zn1−x Lu x WO4 with 0 ≤ x ≤ 0.08 were synthesized using the coprecipitation method followed by thermal treatment at 1000 °C during 4 h. The polycrystalline samples were characterized by X-ray diffraction analysis, scanning electron microscopy (SEM), infrared spectroscopy, and luminescence analysis under X-ray excitation. Rietveld analyses were performed. The variation of the wolframite structure cell parameters in the range 0 ≤ x ≤ 0.05 were congruent with substitution of Zn2+ by Lu3+. SEM micrographs of the obtained samples presented improved crystallization with morphology depending on the lutetium fraction. The luminescence spectra obtained under X-ray excitation (E < 40 keV) were in the blue–green region, and their intensity increased with x up to x = 0.05. The differences in the intensities of the X-ray luminescence spectra could be related to additional cation vacancies resulting from substitution of Zn2+ by Lu3+.


Zinc tungstate Crystal structure X-ray luminescence Lutetium doping 



Parts of this work were supported financially by the Materials and Environment Laboratory (Agadir-Morocco), the Regional Council of Provence-Alpes-Côte d’Azur, and the General Council of Var and by Toulon Provence Mediterranean (Grant No. 2012-16322).


  1. 1.
    Z. Ju, R. Wei, X. Gao, W. Liu, C. Pang, Opt. Mater. 33, 909–913 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Saraf, C. Shivakumara, N. Dhananjaya, S. Behera, H. Nagabhushana, J. Mater. Sci. 50, 2087–2298 (2015)CrossRefGoogle Scholar
  3. 3.
    A.J. Peter, I.B. Shameem Banu, J. Mater. Sci. Mater. Electron. 25, 2771–2779 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Kraus, F.A. Danevich, S. Henry, V.V. Kobychev, V.B. Mikhailik, V.M. Mokina, S.S. Nagorny, O.G. Polischuk, V.I. Tretyak, Nucl. Instrum. Methods A 600, 594–598 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Errandonea, F.J. Manjon, N. Garro, P. Rodríguez-Hernandez, S. Radescu, A. Mujica, A. Munoz, C.Y. Tu, Phys. Rev. B 78, 1–5 (2008)CrossRefGoogle Scholar
  6. 6.
    J.S. Shi, L.L. Wang, Q.L. Wang, J. Mater. Chem. C 1, 8033–8040 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Bonanni, L. Spanhel, M. Lerch, E. Fuglein, G. Muller, Chem. Mater. 10, 304–310 (1998)CrossRefGoogle Scholar
  8. 8.
    Z.D. Lou, J.H. Hao, M. Cocivera, J. Lumin. 99, 349–354 (2002)CrossRefGoogle Scholar
  9. 9.
    R.P. Jia, Q.S. Wu, G.X. Zhang, Y.P. Ding, J. Mater. Sci. 42, 4887–4891 (2007)CrossRefGoogle Scholar
  10. 10.
    X.C. Song, E. Yang, R. Ma, H.F. Chen, Z.L. Ye, M. Luo, Appl. Phys. A Mater. Sci. Process. 94, 185–188 (2009)CrossRefGoogle Scholar
  11. 11.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Singapore, 2002)Google Scholar
  12. 12.
    O.S. Woleis, Lanthanide Luminescence (Springer, New York, 2011)Google Scholar
  13. 13.
    B.G. Wybourne, Optical Spectroscopy of Lanthanides (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  14. 14.
    S. Bhardwaj, R. Shukla, S. Sanghi, A. Agarwal, I. Pal, Spectrochim. Acta A 117, 191–197 (2014)CrossRefGoogle Scholar
  15. 15.
    V. Vidyadharan, M.P. Remya, S. Gopi, S. Thomas, C. Joseph, N.V. Unnikrishnan, P.R. Biju, Spectrochim. Acta A 150, 419–429 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Feng, W.L. Feng, K. Wang, J. Alloys Compd. 628, 343–346 (2015)CrossRefGoogle Scholar
  17. 17.
    F.S. Wen, X. Zhao, H. Huo, J.S. Chen, E.S. Lin, J.H. Zhang, Mater. Lett. 55, 152–157 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Liao, D. Zhou, X. Qiu, S. Liu, H.R. Wen, Optic 124, 5057–5060 (2013)Google Scholar
  19. 19.
    F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, Y. Wang, Opt. Mater. 29, 1861–1865 (2007)CrossRefGoogle Scholar
  20. 20.
    F. Yang, C. Tu, J. Alloys Compd. 535, 83–86 (2012)CrossRefGoogle Scholar
  21. 21.
    F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, Y. Wang, J. Alloys Compd. 455, 269–273 (2008)CrossRefGoogle Scholar
  22. 22.
    F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, X. Lu, J. Lumin. 126, 623–628 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Arin, P. Dumrongrojthanath, O. Yayapao, A. Phuruangrat, S. Thongtem, T. Thongtem, Superlattices Microstruct. 67, 197–206 (2014)CrossRefGoogle Scholar
  24. 24.
    P. Siriwong, T. Thongtem, A. Phuruangrat, S. Thongtem, CrystEngComm 13, 1564–1569 (2011)CrossRefGoogle Scholar
  25. 25.
    G.B. Kumar, K. Sivaiah, S. Buddhudu, Ceram. Int. 36, 199–202 (2010)CrossRefGoogle Scholar
  26. 26.
    S.M. Kanan, Z. Lu, J.K. Cox, G. Bernhardt, C.P. Tripp, Langmuir 18, 1707–1712 (2002)CrossRefGoogle Scholar
  27. 27.
    L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida, A.C. Rabelo, I.C. Nogueira, N.C. Batista, J.A. Varela, M.R.M.C. Santos, E. Longo, M. Siu Li, RSC Adv. 2, 6438–6454 (2012)CrossRefGoogle Scholar
  28. 28.
    W.L. Feng, H.P. Lin, H.G. Liu, Z. Naturforsch. A 71, 11–15 (2015)Google Scholar
  29. 29.
    Q. Zhang, Z. Xia, RSC Adv. 4, 53237–53244 (2014)CrossRefGoogle Scholar
  30. 30.
    H. Ait Ahsaine, M. Ezahri, A. Benlhachemi, B. Bakiz, S. Villain, J.-C. Valmalette, F. Guinneton, M. Arab, J.-R. Gavarri, RSC Adv. 5, 96242–96252 (2015)CrossRefGoogle Scholar
  31. 31.
    G. Blasse, in The Luminescence of Closed-Shell Transition-Metal Complexes. New Developments, ed. by M.J. Clarke et al. Structure and Bonding, vol 1 (Springer, Berlin, 1980), pp. 1–41Google Scholar
  32. 32.
    M.J.J. Lammers, G. Blasse, D.S. Robertson, Phys. Status Solidi A 63, 569–572 (1981)CrossRefGoogle Scholar
  33. 33.
    L. Grigorjeva, R. Deych, D. Millers, S. Chernov, Radiat. Meas. 29, 267–271 (1998)CrossRefGoogle Scholar
  34. 34.
    N. Itoh, A.M. Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, 2001)Google Scholar
  35. 35.
    C.S. McCamy, Color Res. Appl. 17, 142–144 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratoire Matériaux et Environnement LME, Faculté des SciencesUniversité Ibn ZohrCité Dakhla, AgadirMorocco
  2. 2.Laboratoire de catalyse et corrosion des matériauxUniversité Chouaib Doukkali, Faculté des sciences El JadidaEl JadidaMorocco
  3. 3.Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334Université de ToulonLa Garde CedexFrance

Personalised recommendations