Advertisement

Research on Chemical Intermediates

, Volume 43, Issue 2, pp 767–782 | Cite as

Regioselectivity of 1,3-dipolar cycloadditions between aryl azides and an electron-deficient alkyne through DFT reactivity descriptors

  • Nazli Javani Dizaji
  • Azita Nouri
  • Ehsan Zahedi
  • Seyed Majid Musavi
  • Arezu Nouri
Article
  • 186 Downloads

Abstract

Conceptual density functional theory, including chemical hardness, electronic chemical potential, global and local electrophilicity index and Fukui functions, is used to predict reactivity and regioselectivity of 1,3-dipolar cycloadditions (13DCs) between five aryl azides (1–5) and an electron-deficient alkyne at the B3LYP/6-31G(d,p) level. Two reaction paths (a) and (b) are considered which result in the corresponding regioisomeric 1,2,3-triazoles P(1-5)a and P(1-5)b, respectively. All the 13DCs proceed via rather asynchronous TSs and the path (b) is clearly more synchronous than the path (a). All the reactions are high exoergic [∆Gº = −45.1 to −51.4 kcal/mol for path (a) and −47.7 to −55.9 kcal/mol for path (b)] with the moderate and nearly similar activation barriers (E a  = 15.4–16.7 kcal/mol) referring a relatively low regioselectivity. All reactivity descriptors but one clearly suggest that path (a) is somewhat preferred over path (b). FMO interactions occur between HOMO13DP and LUMODPh due to the corresponding lower energy gap. All the reactions considered in this work classified as polar 13DCs with NED character. Our theoretical results are in good agreement with those reported experimentally.

Keywords

1,3-Dipolar cycloadditions Conceptual DFT Fukui function Gazquez–Mendez rule HSAB 

Notes

Acknowledgments

The authors gratefully acknowledge The Research Council of the Islamic Azad University Shahr-e-Qods Branch.

References

  1. 1.
    A. Padwa, W.H. Pearson (eds.), Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products (Wiley, Hoboken, 2003)Google Scholar
  2. 2.
    M. Regitz, Phosphaalkynes: new building blocks in synthetic chemistry. Chem. Rev. 90, 191–213 (1990)CrossRefGoogle Scholar
  3. 3.
    M.T. Nguyen, An analysis of reactant approach in concerted 1, 3-dipolar cycloadditions by the second moment of localized orbitals. J. Mol. Struct. (THEOCHEM) 105, 343–349 (1983)CrossRefGoogle Scholar
  4. 4.
    L. Nyulaszi, P. Varnai, W. Eisfeld, M. Regitz, Regioselectivity in cycloaddition reaction between phosphaacetylene and diazomethane: an ab initio study. J. Comput. Chem. 18, 609–616 (1997)CrossRefGoogle Scholar
  5. 5.
    R. Huisgen, 1, 3-dipolar cycloadditions: past and future. Angew. Chem. Int. Ed. 2, 565–632 (1963)CrossRefGoogle Scholar
  6. 6.
    R.A. Firestone, Orientation in 1,3-dipolar cycloadditions according to the diradical mechanism: partial formal charges in the linnet structures of the diradical intermediates. J. Org. Chem. 37, 2181–2191 (1972)CrossRefGoogle Scholar
  7. 7.
    S.A. Siadati, An example of a stepwise mechanism for the catalyst-free 1, 3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett. 56, 4857–4863 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Griess, Ueber diazocyanbenzol. Ber. Dtsch. Chem. Ges. 2, 369–370 (1869)CrossRefGoogle Scholar
  9. 9.
    E.F.V. Scriven, K. Turnbull, Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988)CrossRefGoogle Scholar
  10. 10.
    W.H. Pearson, P. S. Ramamoorthy in Encyclopedia of Reagents for Organic Synthesis, ed. by L. Paquette L. (Wiley, New York, 2004)Google Scholar
  11. 11.
    B. Souad, C.E. Fatmi, T. Mabrouk, Synthesis of some 1,4,5-trisubstituted 1,2,3-triazoles by 1,3-dipolarcycloaddition of 2-substituted phenyl azides to dimethyl acetylene dicarboxylate (DMAD), regular versus microwave irradiation: a comparative study. Rasayan. J. Chem. 4, 806–809 (2011)Google Scholar
  12. 12.
    K.N. Houk, J. Sims, C.R. Watts, L.J. Luskus, Origin of reactivity, regioselectivity, and periselectivity in 1, 3-dipolar cycloadditions. J. Am. Chem. Soc. 95, 7301–7315 (1973)CrossRefGoogle Scholar
  13. 13.
    J. Geittner, R. Huisgen, R. Sustmann, Kinetics of 1, 3-dipolar cycloaddition reactions of diazomethane; a correlation with homo-lumo energies. Tetrahedron Lett. 18, 881–884 (1977)CrossRefGoogle Scholar
  14. 14.
    D.G. Williamson, R.J. Cvetanovic, Rates of ozone-olefin reactions in carbon tetrachloride solutions. J. Am. Chem. Soc. 90, 3668–3672 (1968)CrossRefGoogle Scholar
  15. 15.
    R. Huisgen, G. Szeimies, L. Mobius, 1.3-Dipolare cycloadditionen, XXXII. Kinetik der additionen organischer azide an CC-Mehrfachbindungen. Chem. Ber. 100, 2494–2507 (1967)CrossRefGoogle Scholar
  16. 16.
    T.M.V.D. Pinho e Melo, Recent advances on the synthesis and reactivity of isoxazoles. Curr. Org. Chem. 9, 925–958 (2005)CrossRefGoogle Scholar
  17. 17.
    K.N. Houk, Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 8, 361–369 (1975)CrossRefGoogle Scholar
  18. 18.
    J. Barluenga, C. Valdes, G. Beltran, M. Escribano, F. Aznar, Developments in Pd catalysis: synthesis of 1H1,2,3-triazoles from sodium azide and alkenyl bromides. Angew. Chem. Int. Ed. 45, 6893–6896 (2006)CrossRefGoogle Scholar
  19. 19.
    F. Himo, T. Lovell, R. Hilgraf, V.V. Rostovtsev, L. Noodleman, K.B. Sharpless, V.V. Fokin, Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 127, 210–216 (2005)CrossRefGoogle Scholar
  20. 20.
    R.A. Firestone, Orientation in the 1, 3-dipolar cycloaddition of diazomethane and ethyl vinyl ether. J. Org. Chem. 41, 2212–2214 (1976)CrossRefGoogle Scholar
  21. 21.
    L.R. Domingo, A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4, 32415–32428 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Wei, J. Chen, J. Xu, L. Cao, H. Deng, W. Sheng, H. Zhang, W. Cao, Scope and regioselectivity of the 1,3-dipolar cycloaddition of azides with methyl 2-perfluoroalkynoates for an easy, metal-free route to perfluoroalkylated 1,2,3-triazoles. J. Fluor. Chem. 133, 146–154 (2012)CrossRefGoogle Scholar
  23. 23.
    M.J. Frisch et al., Gaussian 03, Revision B.03 (Gaussian, Pittsburgh, 2003), p. 9Google Scholar
  24. 24.
    A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  25. 25.
    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  26. 26.
    R. Ditchfield, W.J. Hehre, J.A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)CrossRefGoogle Scholar
  27. 27.
    E. Paredes, R. Brasca, M. Kneeteman, P.M.E. Mancini, A novel application of the Diels–Alder reaction: nitronaphthalenes as normal electron demand dienophiles. Tetrahedron 63, 3790–3799 (2007)CrossRefGoogle Scholar
  28. 28.
    C.N. Alves, A.S. Carneiro, J. Andres, L.R. Domingo, A DFT study of the Diels-Alder reaction between methyl acrolein derivatives and cyclopentadiene. Understanding the effects of Lewis acids catalysts based on sulfur containing boron heterocycles. Tetrahedron 62, 5502–5509 (2006)CrossRefGoogle Scholar
  29. 29.
    L.R. Domingo, A density functional theory study for the Diels–Alder reaction between N-acyl-1-aza-1, 3-butadienes and vinylamines. Lewis acid catalyst and solvent effects. Tetrahedron 58, 3765–3774 (2002)CrossRefGoogle Scholar
  30. 30.
    C. Della Rosa, C. Ormachea, M.N. Kneeteman, C. Adam, P.M.E. Mancini, Diels-Alder reactions of N-tosylpirroles developed in protic ionic liquids. Theoretical studies using DFT methods. Tetrahedron Lett. 52, 6754–6757 (2011)CrossRefGoogle Scholar
  31. 31.
    P.M.E. Mancini, C.M. Ormachea, C.D. Della Rosa, M.N. Kneeteman, A.G. Suarez, L.R. Domingo, Ionic liquids and microwave irradiation as synergistic combination for polar Diels-Alder reactions using properly substituted heterocycles as dienophiles. A DFT study related. Tetrahedron Lett. 53, 6508–6511 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Bouacha, A.K. Nacereddine, A. Djerourou, A theoretical study of the mechanism, stereoselectivity and Lewis acid catalyst on the Diels–Alder cycloaddition between furan and activated alkenes. Tetrahedron Lett. 54, 4030–4033 (2013)CrossRefGoogle Scholar
  33. 33.
    H.B. Schlegel, Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3, 214218 (1982)CrossRefGoogle Scholar
  34. 34.
    A.E. Reed, F. Weinhold, Natural bond orbital analysis of near-Hartree–Fock water dimer. J. Phys. Chem. 78, 4066–4073 (1983)CrossRefGoogle Scholar
  35. 35.
    W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980 (1996)CrossRefGoogle Scholar
  36. 36.
    P.K. Chattaraj, U. Sarker, D. Ranjan Roy, Electrophilicity index. Chem. Rev. 106, 2065–2091 (2006)CrossRefGoogle Scholar
  37. 37.
    L.R. Domingo, E. Chamorro, P. Perez, Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem. 73, 4615–4624 (2008)CrossRefGoogle Scholar
  38. 38.
    P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)CrossRefGoogle Scholar
  39. 39.
    R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)CrossRefGoogle Scholar
  40. 40.
    B. Gmez, P.K. Chattaraj, E. Chamorro, R. Contreras, P. Fuentealba, A density functional study of the claisen rearrangement of allyl aryl ether, allyl arylamine, allyl aryl thio ether, and a series of meta-substituted molecules through reactivity and selectivity profiles. J. Phys. Chem. A 106, 11227–11233 (2002)CrossRefGoogle Scholar
  41. 41.
    R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)CrossRefGoogle Scholar
  42. 42.
    T.A. Koopmans, Uber die zuordnung von wellenfunk tionen und eigenwerten zu den einzelenen electronen eines atoms. Physica 1, 104–113 (1934)CrossRefGoogle Scholar
  43. 43.
    R.G. Pearson, Chemical hardness: applications from molecules to solids (Wiley-VCH Verlag GMBH, Weinheim, 1997)CrossRefGoogle Scholar
  44. 44.
    P.K. Chattaraj, S. Sengupta, Popular electronic structure principles in a dynamical context. J. Phys. Chem. 100, 16126–16130 (1996)CrossRefGoogle Scholar
  45. 45.
    R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  46. 46.
    L.R. Domingo, P. Perez, The nucleophilicity N index in organic chemistry. Org. Biomol. Chem. 9, 7168–7175 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Noorizadeh, H. Maihami, A theoretical study on the regioselectivity of Diels–Alder reactions using electrophilicity index. J. Mol. Struct. (THEOCHEM) 763, 133–144 (2006)CrossRefGoogle Scholar
  48. 48.
    L.R. Domingo, S.R. Emamian, Understanding the mechanisms of [32] cycloaddition reactions. The pseudoradical versus the zwitterionic mechanism. Tetrahedron 70, 1267–1273 (2014)CrossRefGoogle Scholar
  49. 49.
    L.R. Domingo, M.J. Aurell, P. Perez, A DFT analysis of the participation of zwitterionic TACs in polar [32] cycloaddition reactions. Tetrahedron 70, 1–7 (2014)CrossRefGoogle Scholar
  50. 50.
    L.R. Domingo, M.J. Aurell, P. Perez, A mechanistic study of the participation of azomethine ylides and carbonyl ylides in [32] cycloaddition reactions. Tetrahedron 71, 1050–1057 (2015)CrossRefGoogle Scholar
  51. 51.
    F. Mendez, J.L. Gazquez, Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J. Am. Chem. Soc. 116, 9298–9301 (1994)CrossRefGoogle Scholar
  52. 52.
    J.L. Gazquez, A. Martinez, F. Mendez, Relationship between energy and hardness differences. J. Phys. Chem. 97, 4059–4063 (1993)CrossRefGoogle Scholar
  53. 53.
    A. Nouri, E. Zahedi, F.J. Jafari, A. Nouri, Diels–Alder reactions of α-cyano α, β-unsaturated ketones with 2-methyl-1, 3-butadiene: DFT study of mechanism, reactivity and regioselectivity. Prog. React. Kinet. Mech. 40, 177–189 (2015)Google Scholar
  54. 54.
    A.K. Chandra, M.T. Nguyen, Density functional approach to regiochemistry, activation energy, and hardness profile in 1, 3-dipolar cycloadditions. J. Phys. Chem. A 102, 6181–6185 (1998)CrossRefGoogle Scholar
  55. 55.
    A.K. Chandra, M.T. Nguyen, Use of local softness for the interpretation of reaction mechanisms. Int. J. Mol. Sci. 3, 310–323 (2002)CrossRefGoogle Scholar
  56. 56.
    W. Yang, W.J. Mortier, The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc. 108, 5708–5711 (1986)CrossRefGoogle Scholar
  57. 57.
    H. Chemouri, S.M. Mekelleche, Elucidation of the substitutent effects on the reaction pathway of the cycloaddition of 1, 3-diazabuta-1, 3-dienes with ketenes using DFT-based reactivity indexes. J. Mol. Struct. (THEOCHEM) 813, 67–72 (2007)CrossRefGoogle Scholar
  58. 58.
    L.R. Domingo, P. Perez, J.A. Saez, Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 3, 1486–1494 (2013)CrossRefGoogle Scholar
  59. 59.
    S.A. Blair, A.J. Thakkar, How often is the minimum polarizability principle violated? Chem. Phys. Lett. 556, 346–349 (2013)CrossRefGoogle Scholar
  60. 60.
    M. Torrent-Sucarrat, J.M. Luis, M. Duran, M. Sola, Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations? J. Chem. Phys. 117, 10561–10570 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Nazli Javani Dizaji
    • 1
  • Azita Nouri
    • 1
  • Ehsan Zahedi
    • 2
  • Seyed Majid Musavi
    • 1
  • Arezu Nouri
    • 3
  1. 1.Department of Chemistry, Shahr-e Qods BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Shahrood BranchIslamic Azad UniversityShahroodIran
  3. 3.Central LaboratoryIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations