Research on Chemical Intermediates

, Volume 43, Issue 1, pp 545–559 | Cite as

Nickel catalyst supported on mesoporous MgAl2O4 nanopowders synthesized via a homogenous precipitation method for dry reforming reaction

  • Fereshteh Meshkani
  • Sayyede Fateme Golesorkh
  • Mehran Rezaei
  • Mahmood Andache


Mesoporous MgAl2O4 nanopowders were synthesized via the homogenous precipitation method and employed as a support for Ni catalysts in the dry reforming reaction. The prepared samples were characterized by XRD, BET, TPR, TPO, NH3-TPD, and SEM techniques. The XRD and BET results revealed that the prepared MgAl2O4 powder exhibited a nanocrystalline structure with high surface area (175 m2g−1). The catalytic tests, including activity and stability tests, showed that the prepared catalysts with various nickel loadings possessed high activity and stability in reaction. The Ni/MgAl2O4 with the highest amount of Ni had an acceptable performance in a long-term stability test. Increasing nickel loading increased the methane conversion and the amount of deposited carbon. The effects of feed ratio and GHSV on the catalytic activity of the Ni/MgAl2O4 catalyst were investigated in detail.


Dry reforming Magnesium aluminate Carbon dioxide Nanopowders Nickel catalysts 



The authors gratefully acknowledge the support from the Iran National Science Foundation (INSF) and the University of Kashan for this work by Grant No. 158426/112.


  1. 1.
    N. Laosiripojana, S. Assabumrungrat, Appl. Catal. B Environ. 60, 107 (2005)CrossRefGoogle Scholar
  2. 2.
    D. San Jose´-Alonso, M.J. Illa ´n-Go´mez, M.C. Roma´n-Martı´nez, Int. J. Hydrogen Energy 38, 2230 (2013)CrossRefGoogle Scholar
  3. 3.
    F. Meshkani, M. Rezaei, Int. J. Hydrogen Energy 35, 10295 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, H. Wang, A.K. Dalai, Appl. Catal. A Gen. 339, 121 (2008)CrossRefGoogle Scholar
  5. 5.
    C.E. Daza, S. Moreno, R. Molina, Int. J. Hydrogen Energy 36, 3886 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Hadian, M. Rezaei, Z. Mosayebi, F. Meshkani, J. Nat. Gas Chem. 21, 200 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios, C. Mirodatos, J. Catal. 172, 118 (1997)CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, X.E. Verykios, Appl. Catal. A Gen. 138, 109 (1996)CrossRefGoogle Scholar
  9. 9.
    A.S. Bobin, V.A. Sadykov, V.A. Rogov, N.V. Mezentseva, G.M. Alikina, E.M. Sadovskaya, T.S. Glazneva, N.N. Sazonova, M.Y. Smirnova, S.A. Veniaminov, C. Mirodatos, Top. Catal. 56, 958 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Pakhare, J. Spivey, Chem. Soc. Rev. 43, 7813 (2014)CrossRefGoogle Scholar
  11. 11.
    S.E. Evans, O.J. Good, J.Z. Staniforth, R.M. Ormerod, R.J. Darton, RSC Adv. 4, 30816 (2014)CrossRefGoogle Scholar
  12. 12.
    Samuel E. Evans, John Z. Staniforth, Richard J. Darton, R. Mark Ormerod, Green Chem. 16, 4587 (2014)CrossRefGoogle Scholar
  13. 13.
    J.S. Choi, K.I. Moon, Y.G. Kim, J.S. Lee, C.H. Kim, D.L. Trimm, Catal. Lett. 52, 43 (1998)CrossRefGoogle Scholar
  14. 14.
    Z. Haoa, Q. Zhua, Z. Jianga, B. Houa, H. Li, Fuel Process. Technol. 90, 113 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Guo, H. Lou, H. Zhao, D. Chai, X. Zheng, Appl. Catal. A Gen. 273, 75 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Frusteri, F. Arena, G. Calogero, T. Torre, A. Parmaliana, Catal. Commun. 2, 49 (2001)CrossRefGoogle Scholar
  17. 17.
    V.C.H. Kroll, H.M. Swaan, C. Mirodatos, J. Catal. 161, 409 (1996)CrossRefGoogle Scholar
  18. 18.
    K. Nagaoka, M. Okamura, K. Aika, Catal. Commun. 2, 255 (2001)CrossRefGoogle Scholar
  19. 19.
    S. Damyanova, B. Pawelec, K. Arishtirova, J.L.G. Fierro, Int. J. Hydrogen Energy 37, 15966 (2012)CrossRefGoogle Scholar
  20. 20.
    V.M. Mysov, K.G. Ione, Chem. Sustain. Dev. 11, 197 (2003)Google Scholar
  21. 21.
    S. Wang, G.Q. (Max) Lu, Energy Fuels 10, 896 (1996)CrossRefGoogle Scholar
  22. 22.
    A. Ballarini, F. Basile, P. Benito, I. Bersani, G. Fornasari, S. de Miguel, S.C.P. Maina, J. Vilella, A. Vaccari, O.A. Scelza, Appl. Catal. A: Gen. 433, 1 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Wang, G.Q. Lu, J. Chem. Technol. Biotechnol. 75, 589 (2000)CrossRefGoogle Scholar
  24. 24.
    M.N. Barroso, M.F. Gomez, M.C. Abello, Appl. Catal. A Gen. 394, 124 (2011)Google Scholar
  25. 25.
    S. Surblé, D. Gosset, M. Dollé, G. Baldinozzi, S. Urvoy, D. Siméone, Solid State Sci. 13, 42 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Chandradass, K.H. Kim, J. Ceram. Process. Res. 11, 96 (2010)Google Scholar
  27. 27.
    J. Guo, H. Lou, H. Zhao, D. Chai, X. Zheng, Appl. Catal. A 273, 75 (2004)CrossRefGoogle Scholar
  28. 28.
    F. Meshkani, M. Rezaei, Powder Technol. 196, 85 (2009)CrossRefGoogle Scholar
  29. 29.
    Z. Mosayebi, M. Rezaei, N. Hadiana, F.Z. Kordshuli, F. Meshkani, Mater. Res. Bull. 47, 2154 (2012)CrossRefGoogle Scholar
  30. 30.
    J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Y. Yajima, Ceram. Int. 27, 481 (2001)CrossRefGoogle Scholar
  31. 31.
    C.R. Bhattacharjee, D.D. Purkayastha, S. Bhattacharjee, A. Nath, J. Sci. Technol. Phys. Sci. Technol. 7, 122 (2011)Google Scholar
  32. 32.
    G. Soler-Illia, M. Jobbagy, R.J. Candal, A.E. Regazzoni, M.A. Blesa, J. Dispers. Sci. Technol. 19, 207 (1998)CrossRefGoogle Scholar
  33. 33.
    Z. Alipour, M. Rezaei, F. Meshkani, J. Ind. Eng. Chem. 20, 2858 (2014)CrossRefGoogle Scholar
  34. 34.
    N. Habibi, H.R. Arandiyan, M. Rezaei, RSC Adv. 6, 29576 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fereshteh Meshkani
    • 2
  • Sayyede Fateme Golesorkh
    • 1
  • Mehran Rezaei
    • 1
    • 2
  • Mahmood Andache
    • 3
  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of EngineeringUniversity of KashanKashanIran
  3. 3.School of ChemistryUniversity of TehranTehranIran

Personalised recommendations