Research on Chemical Intermediates

, Volume 42, Issue 10, pp 7417–7427 | Cite as

Host (nanocavity of dealuminated Y zeolite)-guest (Ce(IV) salophen/TiO2) nanocomposite materials as an efficient photocatalyst for degradation of 4-nitrophenol



Ce(IV) salophen encapsulated into dealuminated Y zeolite was prepared by the flexible ligand method. Incorporation of TiO2 into nanocages of dealuminated Y zeolite was performed by the impregnation method. The obtained photocatalyst was characterized by FT-IR, XRD, DRS, SEM, EDS and ICP techniques. The amount of Ce(salophen) in the zeolite supercages was 0.07 mg/g of encapsulated zeolite. This catalytic system was investigated in the photodegradation of 4-nitrophenol. In this work, the effect of dark conditions, and visible and UV illumination was investigated for the degradation of 4-nitrophenol. In addition, the effect of other parameters including catalyst loading, H2O2 and TiO2 was studied in the degradation of 4-nitrophenol. The obtained results reveal that the photocatalyst performance depends on catalyst loading, the presence of H2O2, and UV illumination.


Heterogeneous catalyst 4-Nitrophenol Photodegradation Ce(salophen) Dealuminated Y zeolite 


  1. 1.
    W. Sun, J. Li, X. Lü, F. Zhang, Res. Chem. Intermed. 39, 1447 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Ma, S. Huang, J. Lin, Water Sci. Technol. 42, 155 (2000)Google Scholar
  3. 3.
    M.S. Dieckmann, K.A. Gray, Water Res. 30, 1169 (1996)CrossRefGoogle Scholar
  4. 4.
    T.B. Ogunbayo, E. Antunes, T. Nyokong, J. Mol. Catal. A Chem. 334, 123 (2011)CrossRefGoogle Scholar
  5. 5.
    K.S. Low, C.K. Lee, A.M. Wong, J. Environ. Sci. Health: Part A 31, 13 (1995)Google Scholar
  6. 6.
    J. Kiwi, C. Pulgarin, P. Peringer, M. Grätzel, Appl. Catal. B Environ. 3, 85 (1993)CrossRefGoogle Scholar
  7. 7.
    I.M. Banat, P. Nigam, D. Singh, R. Marchant, Bioresour. Technol. 58, 217 (1996)CrossRefGoogle Scholar
  8. 8.
    C.P. Huang, C. Dong, Z. Tang, Waste Manage. 13, 361 (1993)CrossRefGoogle Scholar
  9. 9.
    B. Pan, W. Du, W. Zhang, X. Zhang, Q. Zhang, B. Pan, L. Lv, J. Chen, Environ. Sci. Technol. 41, 6 (2007)Google Scholar
  10. 10.
    N. San, A. Hatipoğlu, G. Koçtürk, Z. Çınar, J. Photochem. Photobiol. A Chem. 146, 189 (2002)Google Scholar
  11. 11.
    Y. Kim, M. Yoon, J. Mol. Catal. A Chem. 168, 257 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawal, K. Domen, T. Onishi, J. Phys. Chem. 90, 4 (1986)Google Scholar
  13. 13.
    S. Sato, Langmuir 4, 4 (1988)CrossRefGoogle Scholar
  14. 14.
    E. Rahmani, A. Ahmadpour, M. Zebarjad, Chem. Eng. J. 174, 709 (2011)CrossRefGoogle Scholar
  15. 15.
    T. Kamegawa, R. Kido, D. Yamahana, H. Yamashita, Micropor. Mesopor. Mater. 165, 142 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Inumaru, T. Kasahara, M. Yasui, S. Yamanaka, Chem. Commun. 3 (2005)Google Scholar
  17. 17.
    Y. Kuwahara, J. Aoyama, K. Miyakubo, T. Eguchi, T. Kamegawa, K. Mori, H. Yamashita, J. Catal. 285, 223 (2012)CrossRefGoogle Scholar
  18. 18.
    H. Yamashita, H. Nose, Y. Kuwahara, Y. Nishida, S. Yuan, K. Mori, Appl. Catal. A General 350, 164 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Zanjanchi, A. Ebrahimian, M. Arvand, J. Hazard. Mater. 175, 992 (2010)CrossRefGoogle Scholar
  20. 20.
    H.V. Bekkum, E.M. Flanigen, P.A. Jacobs, J.C. Jansen (ed.), in: 2nd Completely revised and expanded edition (Ed.), (2001)Google Scholar
  21. 21.
    N. Sapawe, A.A. Jalil, S. Triwahyono, Chem. Eng. J. 225, 254 (2013)CrossRefGoogle Scholar
  22. 22.
    L. Chen, X. Wang, X. Guo, H. Guo, Y. Chen, Chem. Eng. Sci. 62, 4469 (2007)CrossRefGoogle Scholar
  23. 23.
    C.L. Marchena, L. Lerici, S. Renzini, L. Pierella, L. Pizzio, Appl. Catal. B Environ. 188, 23 (2016)CrossRefGoogle Scholar
  24. 24.
    B. Sulikowski, J. Phys. Chem. 97, 6 (1993)CrossRefGoogle Scholar
  25. 25.
    M. Moosavifar, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, J. Mol. Catal. A Chem. 377, 92 (2013)CrossRefGoogle Scholar
  26. 26.
    G. Li, L. Chen, J. Bao, T. Li, F. Mei, Appl. Catal. A General 346, 134 (2008)CrossRefGoogle Scholar
  27. 27.
    T. Cai, Y. Liao, Z. Peng, Y. Long, Z. Wei, Q. Deng, J. Environ. Sci. 21, 997 (2009)CrossRefGoogle Scholar
  28. 28.
    D. Kapusuz, J. Park, A. Ozturk, J. Phys. Chem. Solids 74, 1026 (2013)CrossRefGoogle Scholar
  29. 29.
    W. Zhang, X. Xiao, L. Zheng, C. Wan, Appl. Surf. Sci. 358, 468 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Micropor. Mesopor. Mater. 116, 77 (2008)CrossRefGoogle Scholar
  31. 31.
    X. Liu, K.-K. Iu, J. Kerry Thomas, Chem. Phys. Lett. 195, 163 (1992)Google Scholar
  32. 32.
    J. Połtowicz, K. Pamin, E. Tabor, J. Haber, A. Adamski, Z. Sojka, Appl. Catal. A General 299, 235 (2006)CrossRefGoogle Scholar
  33. 33.
    P. Chen, B. Fan, M. Song, C. Jin, J. Ma, R. Li, Catal. Commun. 7, 969 (2006)CrossRefGoogle Scholar
  34. 34.
    G. Liu, C. Sun, H.G. Yang, S.C. Smith, L. Wang, G.Q. Lu, H.-M. Cheng, Chem. Commun. 46, 755 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of MaraghehMaraghehIran

Personalised recommendations