Research on Chemical Intermediates

, Volume 42, Issue 9, pp 6881–6892 | Cite as

Design and synthesis of some new tri-substituted pyrazole derivatives as anticancer agents

  • Hoda H. Fahmy
  • Aladdin M. Srour
  • Mohamed A. Ismail
  • Mai A. Khater
  • Rabah A. Serrya
  • May A. El-Manawaty


A new series of tri-substituted pyrazole derivatives were designed as anti-cancer agents and synthesized, starting with the formylation of semicarbazone via the Vilsmeier–Haack reaction to give 3-(4-bromophenyl)-1H-pyrazole-4-carbaldehyde I which was the precursor of compounds 19. The new chemical entities were screened for their anti-cancer activity on various human cancer cell lines, namely: hepatocellular carcinoma HepG2, breast cancer MCF-7, lung carcinoma A549 and prostatic cancer PC3. Most of the synthesized compounds showed remarkable activity on the tested cell lines, while compound 2 had the highest potency against the HepG2 cell line with an IC50 of 9.13 µM compared with doxorubicin (IC50 = 34.24 µM), the reference standard used in this study, and compound 7 was the most active on the rest of the three cell lines; MCF-7, A549 and PC3 (IC50 = 16.52, 6.52 and 9.13 µM, respectively) relative to IC50 = 20.85, 5.93 and 38.02 µM of the standard. Thus, some of the synthesized tri-substituted pyrazole derivatives, specially 2 and 7, have the potential to be developed into potent anticancer agents.


Tri-substituted pyrazole Vilsmeier–Haack Antiproliferative Anticancer 

Supplementary material

11164_2016_2502_MOESM1_ESM.pdf (3.9 mb)
Supplementary material 1 (PDF 3952 kb)


  1. 1.
    Cancer, fact sheet, (WHO media centre, 2015),
  2. 2.
    S. Sommerwerk, L. Heller, R. Csuk, Arch. Pharm. Chem. Life Sci. 348, 46 (2015)CrossRefGoogle Scholar
  3. 3.
    K. Kairemo, P. Erba, K.K. Bergstrom, E.K. Pauwels, J. Curr. Radiopharm. 1, 30 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Hanahan, R.A. Weinberg, Cell 100, 57 (2000)CrossRefGoogle Scholar
  5. 5.
    P. Graham, An Introduction to Medicinal Chemistry, 4th edn. (Oxford University Press, Oxford, 2009), p. 519Google Scholar
  6. 6.
    T. Ochi, K. Jobo-Magari, A. Yonezawa, K. Matsumori, T. Fu, Eur. J. Pharmacol. 365, 259 (1999)CrossRefGoogle Scholar
  7. 7.
    Y. Li, Z. Liu, Free Radic. Biol. Med. 52, 103 (2012)CrossRefGoogle Scholar
  8. 8.
    E. Nicolaï, G. Curé, J. Goyard, M. Kirchner, J.M. Teulon, A. Versigny, M. Cazes, A. Virone-Oddos, F. Caussade, A. Cloarec, Chem. Pharm. Bull. 42, 1617 (1994)CrossRefGoogle Scholar
  9. 9.
    A.E. Rashad, M.I. Hegab, R.E. Abdel-Megeid, J.A. Micky, F.M.E. Abdel-Megeid, Bioorg. Med. Chem. 16, 7102 (2008)CrossRefGoogle Scholar
  10. 10.
    D. Sunil, A.M. Isloor, P. Shetty, Der Pharma Chem. 1, 19 (2009)Google Scholar
  11. 11.
    S. Mert, A.S. Yağlıoğlu, I. Demirtas, R. Kasımoğullar, Med. Chem. Res. 23, 1278 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Cheng, L. Huan-Qiu, S. Juan, Z. Yang, Z. Hai-Liang, Bioorg. Med. Chem. 18, 4606 (2010)CrossRefGoogle Scholar
  13. 13.
    I. Vujasinović, A. Paravić-Radičević, K. Mlinarić-Majerski, K. Brajša, B. Bertoša, Bioorg. Med. Chem. 20, 2101 (2012)CrossRefGoogle Scholar
  14. 14.
    G.M. Nitulescu, C. Draghici, A.V. Missir, Eur. J. Med. Chem. 45, 4914 (2010)CrossRefGoogle Scholar
  15. 15.
    R. Pérez-Fernández, P. Goya, J. Elguero Arkivoc ii, 233 (2014)Google Scholar
  16. 16.
    H.M. Kantarjian, R.T. Silver, R.S. Komrokji, R.A. Mesa, R. Tacke, C.N. Harrison, Clin. Lymphoma Myeloma Leuk. 13, 638 (2013)CrossRefGoogle Scholar
  17. 17.
    N. Yamaguchi, A.R. Lucena-Araujo, S. Nakayama, L.L. de Figueiredo-Pontes, D.A. Gonzalez, H. Yasuda, S. Kobayashi, D.B. Costa, Lung Cancer 83, 37 (2014)CrossRefGoogle Scholar
  18. 18.
    A.V. Lebedev, A.B. Lebedeva, V.D. Sheludyakov, E.A. Kovaleva, O.L. Ustinova, I.B. Kozhevnikov, Russ. J. Gen. Chem. 75, 782 (2005)CrossRefGoogle Scholar
  19. 19.
    A.J. Pepino, W.J. Peláez, E.L. Moyano, G.A. Argüello, Eur. J. Org. Chem. 2012, 3424 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Ding, Y. Sun, Z. Liu, Synth. Commun. 33, 1267 (2003)CrossRefGoogle Scholar
  21. 21.
    Y. Suna, M. Ding, Phosphorus. Sulfur Silicon Relat. Elem. 178, 2137 (2003)CrossRefGoogle Scholar
  22. 22.
    M.R. Grever, S.A. Schepartz, B.A. Chabner, Semin. Oncol. 19, 622 (1992)Google Scholar
  23. 23.
    A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, M. Boyd, J. Natl. Cancer Inst. 83, 757 (1991)CrossRefGoogle Scholar
  24. 24.
    M.R. Boyd, K.D. Paull, Drug Rev. Res. 34, 91 (1995)CrossRefGoogle Scholar
  25. 25.
    B.S. El-Menshawi, W. Fayad, K. Mahmoud, S.M. El-Hallouty, M. El-Manawaty, M.H. Olofsson, Indian J. Exp. Biol. 48, 258 (2010)Google Scholar
  26. 26.
    M.I. Thabrew, R.D. Hughes, I.G. McFarlane, J. Pharm. Pharmacol. 49, 1132 (1997)CrossRefGoogle Scholar
  27. 27.
    T. Mosmann, J. Immunol. Methods 65, 55 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hoda H. Fahmy
    • 1
  • Aladdin M. Srour
    • 1
  • Mohamed A. Ismail
    • 2
  • Mai A. Khater
    • 1
  • Rabah A. Serrya
    • 2
  • May A. El-Manawaty
    • 3
  1. 1.Department of Therapeutical ChemistryNational Research CentreCairoEgypt
  2. 2.Pharmaceutical Chemistry Department, Faculty of PharmacyAin Shams UniversityCairoEgypt
  3. 3.Pharmacognosy DepartmentNational Research CentreCairoEgypt

Personalised recommendations