Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 8, pp 6757–6767 | Cite as

Catalytic conversion of raw Dioscorea composita biomass to 5-hydroxymethylfurfural using a combination of metal chlorides in N,N-dimethylacetamide solvent containing lithium chloride

  • Feiyun Li
  • Gaofeng Shi
  • Guoying Wang
  • Taichun Guo
  • Xinming Lei
Article

Abstract

We synthesized 5-hydroxymethylfurfural (HMF) from carbohydrates using metal chloride catalysts. A 33.2 % yield of HMF was obtained from raw Dioscorea composita biomass with high starch by using a catalyst system composed of CrCl3·6H2O and LaCl3·6H2O at 120 °C for 4 h in N,N-dimethylacetamide containing lithium chloride. The catalyst system is also cost-effective for the conversion of soluble starch into HMF. In addition, levulinic acid was not formed in the reactions.

Keywords

Dioscorea composita Soluble starch Glucose Metal chlorides 5-Hydroxymethylfurfural 

Notes

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

11164_2016_2496_MOESM1_ESM.docx (6.4 mb)
Supplementary material 1 (DOCX 6567 kb)

References

  1. 1.
    A.E. Farrell, R.J. Pelvin, B.T. Turner, A.D. Jones, M. O’hare, D.M. Kammen, Science 311, 506 (2006)CrossRefGoogle Scholar
  2. 2.
    P. Szuromi, B. Jasny, D. Clery, J. Austin, B. Hanson, Science 315, 781 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Bicker, J. Hirth, H. Vogel, Green Chem. 5, 280 (2003)CrossRefGoogle Scholar
  4. 4.
    D.A. Simonetti, J.A. Dumesic, ChemSusChem 1, 725 (2008)CrossRefGoogle Scholar
  5. 5.
    J.N. Chheda, G.W. Hubera, J.A. Dumesic, Angew. Chem. Int. Ed. 46, 7164 (2007)CrossRefGoogle Scholar
  6. 6.
    R.-J. van Putten, J.C. van der Waal, E. de Jong, C.B. Rasrendra, H.J. Heeres, J.G. de Vries, Chem. Rev. 2013(113), 1499 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Roman-Leshkov, C.J. Barrett, Z.Y. Liu, J.A. Dumesic, Nature 2007(447), 982 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Mascal, E.B. Nikitin, Angew. Chem. Int. Ed. 47, 7924 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Stahlberg, W.J. Fu, J.M. Woodley, A. Riisager, ChemSusChem 4, 451 (2011)CrossRefGoogle Scholar
  10. 10.
    T. Buntara, S. Noel, P.H. Phua, I. Melian-Cabrera, J.G. de Vries, H.J. Heeres, Angew. Chem. Int. Ed. 50, 7083 (2011)CrossRefGoogle Scholar
  11. 11.
    C.H. Zhou, X. Xia, C.X. Lin, D.S. Tong, J. Beltramini, Chem. Soc. Rev. 40, 5588 (2011)CrossRefGoogle Scholar
  12. 12.
    J.N. Chheda, Y. Roman-Leshkov, J.A. Dumesic, Green Chem. 9, 342 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Yang, X. Xiang, D.M. Tong, C.W. Hu, M.M. Abu-Omar, Bioresource Technol. 116, 302 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Yang, C.W. Hu, M.M. Abu-Omar, Green Chem. 14, 509 (2012)CrossRefGoogle Scholar
  15. 15.
    S.Q. Hu, Z.F. Zhang, J.L. Song, Y.X. Zhou, B.X. Han, Green Chem. 11, 1746 (2009)CrossRefGoogle Scholar
  16. 16.
    J.A. Chun, J.W. Lee, Y.B. Yi, S.S. Hong, C.H. Chung, Starch/Stärke 62, 326 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.B. Yi, M.G. Ha, J.W. Lee, C.H. Chung, Chem. Eng. J. 180, 370 (2012)CrossRefGoogle Scholar
  18. 18.
    T.F. Wang, Y.J. Pagan-Torres, E.J. Combs, J.A. Dumesic, B.H. Shanks, Top. Catal. 55, 657 (2012)CrossRefGoogle Scholar
  19. 19.
    X.L. Tong, L.H. Yu, G.X. Nie, Z.M. Li, J.B. Liu, S. Xue, Environ. Prog. Sustain. 34, 1136 (2015)CrossRefGoogle Scholar
  20. 20.
    H.B. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316, 1597 (2007)CrossRefGoogle Scholar
  21. 21.
    J.B. Binder, R.T. Raines, J. Am. Chem. Soc. 131, 1979 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Wang, L. Fu, X.L. Tong, Q.W. Yang, W.Q. Zhang, Carbohydr. Res. 347, 182 (2012)CrossRefGoogle Scholar
  23. 23.
    B. Kim, J. Jeong, D. Lee, S. Kim, H.J. Yoon, Y.S. Lee, J.K. Cho, Green Chem. 13, 1503 (2011)CrossRefGoogle Scholar
  24. 24.
    K.I. Seri, Y. Inoue, H. Ishida, Chem. Lett. 1, 22 (2000)CrossRefGoogle Scholar
  25. 25.
    T. Heinze, P. Talaba, U. Heinze, Carbohydr. Polym. 42, 411 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, Macromolecules 18, 640 (1985)CrossRefGoogle Scholar
  27. 27.
    C.L. McCormick, P.A. Callais, Macromolecules 18, 2394 (1985)CrossRefGoogle Scholar
  28. 28.
    J.W. Lee, M.G. Ha, Y.B. Yi, C.H. Chunget, Carbohydr. Res. 346, 177 (2011)CrossRefGoogle Scholar
  29. 29.
    V. Bellon-Maurel, C. Vallat, D. Goffinet, Appl. Spectrosc. 49, 556 (1995)CrossRefGoogle Scholar
  30. 30.
    Y.B. Yi, M.G. Ha, J.W. Lee, C.H. Chung, Chem. Eng. J. 180, 370 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Feiyun Li
    • 1
  • Gaofeng Shi
    • 1
  • Guoying Wang
    • 1
  • Taichun Guo
    • 1
  • Xinming Lei
    • 1
  1. 1.School of Petrochemical EngineeringLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations