Research on Chemical Intermediates

, Volume 42, Issue 8, pp 6483–6499 | Cite as

Fabrication of noble-metal-free NiS2/g-C3N4 hybrid photocatalysts with visible light-responsive photocatalytic activities

  • Chengzhang Zhu
  • Zhifeng Jiang
  • Wei Wei
  • Linlin Chen
  • Dong Liu
  • Kun Qian
  • Xiaomeng Lü
  • Jimin Xie


Nanocomposites of NiS2 with graphitic carbon nitride (NiS2/g-C3N4) have been successfully synthesized by means of a facile hydrothermal method. The photocatalytic activities of as-prepared samples were evaluated by monitoring the photodecomposition of rhodamine B under visible light irradiation. The experimental results indicated that visible light-driven NiS2/g-C3N4 composites exhibited an enhanced photocatalytic activity compared to that of pure NiS2, due to the fast generation, separation and transportation of the photogenerated carriers resulting from the addition of NiS2 nanoparticles (NPs). Interestingly, different amounts of NiS2 deposition can affect the photocatalytic activities of the NiS2/g-C3N4 composites. A suitable loading amount of NiS2 NPs presents the best photodegradation performance. The photocatalytic reaction mechanism for the improved photocatalytic performance of NiS2/g-C3N4 catalyst was proposed which was supported by PL, PEC, EIS and active species trapping results. A promising strategy presented here provides a facile route towards the development of economical, noble metal-free composites as photocatalysts for the applications in environmental remediation.


NiS2/g-C3N4 Nanocomposites Visible light Photocatalysis 



The authors gratefully acknowledged the National Natural Science Foundation (21306067, 51402130, 21407065, 21506079), the Industry High Technology Foundation of Jiangsu Province (BE2013090), the Science & Technology Foundation of Zhenjiang (GY2013046, GY2014004 and GY2014028). A. M. Showkot Hossain is acknowledged for his help in the modification of the English of this manuscript.


  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24, 229 (2012)CrossRefGoogle Scholar
  3. 3.
    K.E. O’Shea, I. Garcia, M. Aguilar, Res. Chem. Intermed. 23, 325 (1997)CrossRefGoogle Scholar
  4. 4.
    C.L. Yu, G. Li, K. Santosh, K. Yang, R.C. Jin, Adv. Mater. 26, 892 (2014)CrossRefGoogle Scholar
  5. 5.
    W.J. Li, D.Z. Li, Y.M. Lin, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao, J. Phys. Chem. C 116, 3552 (2012)CrossRefGoogle Scholar
  6. 6.
    W. Zhou, F.F. Sun, Z. Li, K. Pan, B.J. Jiang, Z.Y. Ren, C.G. Tian, H.G. Fu, Adv. Funct. Mater. 21, 1922 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Phuruangrat, S. Mad-Ahin, O. Yayapao, S. Thongtem, T. Thongtem, Res. Chem. Intermed. 41, 9757 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Qu, W. Zhou, Z.Y. Ren, S.C. Du, X.Y. Meng, G.H. Tian, J. Mater. Chem. 22, 16471 (2012)CrossRefGoogle Scholar
  9. 9.
    N. Qutub, B.M. Pirzada, K. Umar, O. Mehraj, S. Sabir, Phys. E 74, 74 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Zou, Z.H. Fu, C. Xiang, W.F. Wu, S.P. Tang, Y.C. Liu, D.L. Yin, Chin. J. Catal. 36, 1077 (2015)CrossRefGoogle Scholar
  11. 11.
    X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)CrossRefGoogle Scholar
  12. 12.
    D.J. Milliron, I. Gur, A.P. Alivisatos, MRS Bull. 30, 41 (2005)CrossRefGoogle Scholar
  13. 13.
    C.H. Lai, M.Y. Lu, L.J. Chen, J. Mater. Chem. 22, 19 (2011)CrossRefGoogle Scholar
  14. 14.
    Q.J. Sun, Y.A. Wang, L.S. Li, D.Y. Wang, T. Zhu, J. Xu, C.H. Yang, Y.F. Li, Nat. Photonics 1, 717 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Pang, C.Z. Wei, X.X. Li, G.C. Li, Y.H. Ma, S.J. Li, J. Chen, J.S. Zhang, Sci. Rep. 4, 3577 (2014)Google Scholar
  16. 16.
    H.Y. Zhu, R. Jiang, L. Xiao, Y.H. Chang, Y.J. Guan, X.D. Li, G.M. Zeng, J. Hazard. Mater. 169, 933 (2009)CrossRefGoogle Scholar
  17. 17.
    D.L. Jiang, L.L. Chen, J.M. Xie, M. Chen, Dalton Trans. 43, 4878 (2014)CrossRefGoogle Scholar
  18. 18.
    J.A. Wilson, Adv. Phys. 21, 143 (1972)CrossRefGoogle Scholar
  19. 19.
    A. Fujimori, K. Mamiya, T. Mizokawa, T. Miyadai, T. Sekiguchi, H. Takahashi, N. Môri, S. Suga, Phys. Rev. B 54, 16329 (1996)CrossRefGoogle Scholar
  20. 20.
    Z.Q. Li, F. Gong, G. Zhou, Z.S. Wang, J. Phys. Chem. C 117, 6561 (2013)CrossRefGoogle Scholar
  21. 21.
    R.C. Pawar, K. Varsha, L.C. Sunyong, Dalton Trans. 43, 12514 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  23. 23.
    L.S. Yin, Y.P. Yuan, S.W. Cao, Z.Y. Zhang, C. Xue, RSC Adv. 4, 6127 (2014)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Lu, Y.Y. Luo, M. He, P.W. Huo, T.T. Chen, W.D. Shi, Y.S. Yan, J.M. Pan, Z.F. Ma, S.Y. Yang, RSC Adv. 3, 18373 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Zhao, M. Pelaez, X.D. Duan, H.P. Deng, K. O’Shea, D. FattaKassinos, D.D. Dionysiou, Appl. Catal. B 134–135, 83 (2013)CrossRefGoogle Scholar
  26. 26.
    X.J. Bai, L. Wang, R.L. Zong, Y.F. Zhu, J. Phys. Chem. C 117, 9952 (2013)CrossRefGoogle Scholar
  27. 27.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26, 3894 (2010)CrossRefGoogle Scholar
  28. 28.
    X.F. Li, J.F. Shen, N. Li, M.X. Ye, Mater. Lett. 139, 81 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Ma, Y.F. Guo, X.H. Liu, D. Zhang, T. Liu, R.Z. Ma, K.C. Zhou, G.Z. Qiu, Chem. Eur. J. 19, 15467 (2013)CrossRefGoogle Scholar
  30. 30.
    Q.X. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011)CrossRefGoogle Scholar
  31. 31.
    F.T. Li, Y. Zhao, Q. Wang, X.J. Wang, Y.J. Hao, R.H. Liu, D.S. Zhao, J. Hazard. Mater. 283, 371 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Xu, L. Han, S.J. Dong, A.C.S. Appl, Mater. Interfaces 5, 12533 (2013)CrossRefGoogle Scholar
  33. 33.
    G.Z. Liao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, J. Mater. Chem. 22, 2721 (2012)CrossRefGoogle Scholar
  34. 34.
    Z.F. Jiang, D. Liu, D.L. Jiang, W. Wei, K. Qian, M. Chen, J.M. Xie, Dalton Trans. 43, 13792 (2014)CrossRefGoogle Scholar
  35. 35.
    P. Niu, G. Liu, H.M. Cheng, J. Mater. Chem. C 116, 11013 (2012)Google Scholar
  36. 36.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397 (2009)CrossRefGoogle Scholar
  37. 37.
    D. Rajamanickam, P. Dhatshanamurthi, M. Shanthi, Mater. Res. Bull. 61, 439 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Di, J.X. Xia, S. Yin, H. Xu, L. Xu, Y.G. Xu, M.Q. He, H.M. Li, J. Mater. Chem. A 2, 5340 (2014)CrossRefGoogle Scholar
  39. 39.
    A.E. Bocquet, K. Mamiya, T. Mizokawa, A. Fujimori, T. Miyadai, H. Takahashi, J. Phys. Condens. Matter 8, 2389 (1996)CrossRefGoogle Scholar
  40. 40.
    Z.F. Jiang, X.M. Lü, D.L. Jiang, J.M. Xie, D.J. Mao, J. Mater. Chem. A 1, 14963 (2013)CrossRefGoogle Scholar
  41. 41.
    Z.F. Jiang, W. Wei, D.J. Mao, C. Chen, Y.F. Shi, X.M. Lü, J.M. Xie, Nanoscale 7, 784 (2015)CrossRefGoogle Scholar
  42. 42.
    Z. Zhong, Y. Yin, B. Gates, Y. Xia, Adv. Mater. 12, 206 (2000)CrossRefGoogle Scholar
  43. 43.
    J.F. Niu, S.Y. Ding, L.W. Zhang, J.B. Zhao, C.H. Feng, Chemosphere 93, 1 (2013)CrossRefGoogle Scholar
  44. 44.
    H.P. Li, J.Y. Liu, W.G. Hou, N. Du, R.J. Zhang, X.T. Tao, Appl. Catal. B 160, 89 (2014)CrossRefGoogle Scholar
  45. 45.
    C.C. Han, L. Ge, C.F. Chen, Y.J. Li, X.L. Xiao, Y.N. Zhang, L.L. Guo, Appl. Catal. B 147, 546 (2014)CrossRefGoogle Scholar
  46. 46.
    M.Q. He, W.B. Li, J.X. Xia, L. Xu, J. Di, H. Xu, S. Yin, H.M. Li, M.N. Li, Appl. Surf. Sci. 331, 170 (2015)CrossRefGoogle Scholar
  47. 47.
    J. Jiang, X. Zhang, P.B. Sun, L.Z. Zhang, J. Phys. Chem. C 115, 20555 (2011)CrossRefGoogle Scholar
  48. 48.
    Z.H. Chen, P. Sun, B. Fan, Z.G. Zhang, X.M. Fang, J. Phys. Chem. C 118, 7801 (2014)CrossRefGoogle Scholar
  49. 49.
    X.M. Lü, J.Y. Shen, J.X. Wang, Z.S. Cui, J.M. Xie, RSC Adv. 5, 15993 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Chengzhang Zhu
    • 1
  • Zhifeng Jiang
    • 1
  • Wei Wei
    • 1
    • 2
  • Linlin Chen
    • 1
  • Dong Liu
    • 1
  • Kun Qian
    • 1
  • Xiaomeng Lü
    • 1
  • Jimin Xie
    • 1
  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Analysis and Test CenterJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations