Research on Chemical Intermediates

, Volume 42, Issue 7, pp 6289–6300 | Cite as

A P/N type compounded Cu2O/TiO2 photo-catalytic membrane for organic pollutant degradation

  • Xuemei Liu
  • Limei Cao
  • Wei Sun
  • Zhenhua Zhou
  • Ji Yang


A heterojunction thin film consisting of n-type titanium dioxide (TiO2) and p-type cuprous oxide (Cu2O) was fabricated on an FTO conducting glass. The TiO2 films were grown on the FTO glass by sol–gel and spray pyrolysis methods, and Cu2O was deposited on it via the hydrothermal method. The morphology, crystalline structure, and optical absorption characteristics were studied by scanning electron microscopy, X-ray diffraction, and ultraviolet–visible diffuse reflectance spectrum, respectively. The results show that the surface of the Cu2O/TiO2 film was composed of net and large grains, which contributed to a large specific surface area. The crystal phase of the TiO2 in the Cu2O/TiO2 film remained anatase. The crystal phase of the Cu2O could not be detected as it is found in traces. The Cu2O/TiO2 film had a stronger optical absorption ability than the pure TiO2 film. To investigate catalytic activity, a photocatalytic degradation experiment of the Cu2O/TiO2 film was performed in a homemade thin-layer micro-reactor. The photocatalytic degradation of methylene blue increased with increasing amounts of deposited Cu2O until a maximum limit was reached. The photocatalytic activity might have declined with an increase in Cu2O content. The metallic oxide has the potential to screen other photocatalysts from the UV source.


Photo-catalyst Photo-catalysis Cu2O/TiO2 thin film Wastewater 



This research was based on work supported by the National Natural Science Foundation of China (21277045), the Public Welfare project of the Ministry of Environmental Protection (201309021), the “Shu Guang” project of the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation, and the Fundamental Research Funds for the Central Universities.


  1. 1.
    T. Matsuo, T. Nishi, Carbon 38, 709–714 (2000)CrossRefGoogle Scholar
  2. 2.
    M.M. Hamed, S.M. Yakout, H.S. Hassan, J. Radioanal. Nucl. Chem. 295, 697–708 (2012)CrossRefGoogle Scholar
  3. 3.
    M.A. Hararah, K.A. Ibrahim, A.H. Al-Muhtaseb, R.I. Yousef, A. Abu-Surrah, A. Qatatsheh, J. Appl. Polym. Sci. 117, 1908–1913 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, Y. Huang, W. Ho, L. Zhang, Z. Zou, S. Lee, J. Hazard. Mater. 169, 77–87 (2009)CrossRefGoogle Scholar
  5. 5.
    M.M. Hamed, I.M. Ahmed, S.S. Metwally, J. Ind. Eng. Chem. 20, 2370–2377 (2014)CrossRefGoogle Scholar
  6. 6.
    M.T. Sulak, H.C. Yatmaz, Desalin. Water Treat. 37, 169–177 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Yu, J. Park, J. Solid State Chem. 183, 2268–2273 (2010)CrossRefGoogle Scholar
  8. 8.
    X. Chen, C. Li, M. Gratzel, R. Kostecki, S.S. Mao, Chem. Soc. Rev. 41, 7909–7937 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B Environ. 125, 331–349 (2012)CrossRefGoogle Scholar
  10. 10.
    A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Appl. Catal. A Gen. 389, 1–8 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229–251 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Froschl, U. Hormann, P. Kubiak, G. Kucerova, M. Pfanzelt, C.K. Weiss, R.J. Behm, N. Husing, U. Kaiser, K. Landfester, M. Wohlfahrt-Mehrens, Chem. Soc. Rev. 41, 5313–5360 (2012)CrossRefGoogle Scholar
  13. 13.
    J.L. Vivero-Escoto, Y.D. Chiang, K.C.W. Wu, Y. Yamauchi, Sci. Technol. Adv. Mater. 13, 013003 (2012)CrossRefGoogle Scholar
  14. 14.
    R.A. Al-Rasheed, in: Water Treatment by Heterogeneous Photocatalysis an Overview, 4th SWCC Acquired Experience Symposium Held in Jeddah, 2005 (2005)Google Scholar
  15. 15.
    R. Terzian, N. Serpone, C. Minero, E. Pelizzetti, J. Catal. 128, 352–365 (1991)CrossRefGoogle Scholar
  16. 16.
    H.X. Guo, K.L. Lin, Z.S. Zheng, F.B. Xiao, S.X. Li, Dyes Pigments 92, 1278–1284 (2012)CrossRefGoogle Scholar
  17. 17.
    W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, Sol. Energy Mater. Sol. Cells 77, 229–237 (2003)CrossRefGoogle Scholar
  18. 18.
    Y. Yu, L. Zhang, J. Wang, Z. Yang, M. Long, N. Hu, Y. Zhang, Nanoscale Res. Lett. 7, 1–6 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Hong, F. Tao, J. Lin, W. Ding, M. Lan, J. Solid State Chem. 228, 174–182 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Yin, X. Wang, L. Wang, Q. Nie, Y. Zhang, W. Wu, Mater. Res. Bull. 72, 176–183 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Bessekhouad, D. Robert, J.V. Weber, Catal. Today 101, 315–321 (2005)CrossRefGoogle Scholar
  22. 22.
    Y. Hou, Q. Zhao, X. Quan, X. Li, G. Chen, Appl. Phys. Lett. 95, 093108 (2009)Google Scholar
  23. 23.
    S. Hussain, C. Cao, W.S. Khan, G. Nabi, Z. Usman, A. Majid, T. Alharbi, Z. Ali, F.K. Butt, M. Tahir, Mater. Sci. Semicond. Proc. 25, 181–185 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.G. Zhang, L.L. Ma, J.L. Li, Y. Yu, Environ. Sci. Technol. 41, 6264–6269 (2007)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, H. Zhu, S. Zheng, F. Pan, T. Wang, ACS Appl. Mater. Interfaces 1, 2111–2114 (2009)CrossRefGoogle Scholar
  26. 26.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Appl. Catal. B Environ. 31, 145–157 (2001)CrossRefGoogle Scholar
  28. 28.
    I. El Saliby, L. Erdei, J.H. Kim, H.K. Shon, Water Res. 47, 4115–4125 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Takahashi, Y. Matsuoka, J. Mater. Sci. 23, 2259–2266 (1988)CrossRefGoogle Scholar
  30. 30.
    S. Hacialioglu, F. Meng, S. Jin, Chem. Commun. 48, 1174–1176 (2012)CrossRefGoogle Scholar
  31. 31.
    Z. Xi, C. Li, L. Zhang, M. Xing, J. Zhang, Int. J. Hydrogen Energy 39, 6345–6353 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Balasubramanian, D. Dionysiou, M. Suidan, V. Subramanian, I. Baudin, J.M. Laîné, J. Mater. Sci. 38, 823–831 (2003)CrossRefGoogle Scholar
  33. 33.
    A. Alem, H. Sarpoolaky, M. Keshmiri, Ceram. Int. 35, 1837–1843 (2009)CrossRefGoogle Scholar
  34. 34.
    A. Alem, H. Sarpoolaky, M. Keshmiri, J. Eur. Ceram. Soc. 29, 629–635 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Keshmiri, M. Mohseni, T. Troczynski, Appl. Catal. B Environ. 53, 209–219 (2004)CrossRefGoogle Scholar
  36. 36.
    N. Wu, J. Wang, N. de Tafen, H. Wang, J.G. Zheng, J.P. Lewis, X. Liu, S.S. Leonard, A. Manivannan, J. Am. Chem. Soc. 132, 6679–6685 (2010)CrossRefGoogle Scholar
  37. 37.
    Z. Xiong, X.S. Zhao, J. Am. Chem. Soc. 134, 5754–5757 (2012)CrossRefGoogle Scholar
  38. 38.
    T.Y. Tsai, S.J. Chang, T.J. Hsueh, H.T. Hsueh, W.Y. Weng, C.L. Hsu, B.T. Dai, Nanoscale Res. Lett. 6, 1–7 (2011)Google Scholar
  39. 39.
    J. Zhang, H. Zhu, S. Zheng, F. Pan, T. Wang, ACS Appl. Mater. Interfaces 1, 2111–2114 (2009)CrossRefGoogle Scholar
  40. 40.
    J.W. Chen, J.W. Shi, X. Wang, H.Y. Ai, H.J. Cui, M.L. Fu, Powder Technol. 246, 108–116 (2013)CrossRefGoogle Scholar
  41. 41.
    M.L. Fetterolf, H.V. Patel, J.M. Jennings, J. Chem. Eng. Data 48, 831–835 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xuemei Liu
    • 1
  • Limei Cao
    • 1
  • Wei Sun
    • 1
  • Zhenhua Zhou
    • 1
  • Ji Yang
    • 1
  1. 1.School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical ProcessEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations