Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 6, pp 6013–6024 | Cite as

N-vinylcaprolactam-based microgels: synthesis, characterization and drug release applications

  • Bengi Özkahraman
  • Işıl Acar
  • Mehmet Koray Gök
  • Gamze Güçlü
Article

Abstract

In this study, N-vinylcaprolactam, metacrylic acid sodium salt and itaconic acid sodium salt-based copolymeric and terpolymeric microgels were synthesized by precipitation polymerization method with 2,2′-azobis(2-methylpropioamidine) dihydrochloride as initiator. Then these microgels were characterized by SEM technique, cloud points and colloidal properties determinations. Volume phase transitions of copolymeric and terpolymeric N-vinylcaprolactam-based microgels are determined at an interval of 32–37 °C. Rhodamine B (model drug) and Nadalol (beta-blocker drug) were used to investigate the drug loading and release behavior of microgels. It is concluded that model drug loading capacity and release amount changed with the presence and amount of itaconic acid sodium salt in the microgel structure. In addition, the maximum drug release amount of microgels was found to be 58 and 55 % for Rhodamine B and Nadolol, respectively. As a result, we can say that the microgels obtained in this study are suitable for drug delivery applications.

Keywords

N-vinylcaprolactam Itaconic acid Methacrylic acid Microgel Rhodamine-B Nadolol Drug release 

Notes

Acknowledgments

This work is a part of the Ph.D. thesis titled “Usage of Polymeric Hydrogels and Microgels in Drug Release Applications”, prepared at Istanbul University, Institute of Science, and supported by the Research Fund of the Istanbul University, Project Number: 29693.

References

  1. 1.
    S. Chaterji, I.K. Kwon, K. Park, Prog. Polym. Sci. 32, 1083–1122 (2007)CrossRefGoogle Scholar
  2. 2.
    J. Kopecek, Nature 417, 388–391 (2002)CrossRefGoogle Scholar
  3. 3.
    S. Zhou, B. Chu, J. Phys. Chem. B 102, 1364–1371 (1998)CrossRefGoogle Scholar
  4. 4.
    I. Varga, T. Gilanyi, R. Meszaros, G. Filipcsei, M. Zrinyi, J. Phys. Chem. B 105, 9071–9076 (2001)CrossRefGoogle Scholar
  5. 5.
    R. Pelton, Adv. Colloid Interface Sci. 85, 1–33 (2000)CrossRefGoogle Scholar
  6. 6.
    B.R. Saunders, N. Laajam, E. Daly, S. Teow, X. Hu, R. Stepto, Adv. Colloid Interface Sci. 147–148, 251–262 (2009)CrossRefGoogle Scholar
  7. 7.
    B.R. Saunders, B. Vincent, Adv. Colloid Interface Sci. 80, 1–25 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Imaz, J. Forcada, J. Polym. Sci., Part A: Polym. Chem. 46, 2766–2772 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Berger, R. Singh, J.D. Sudha, H.J. Adler, A. Pich, Polymer 51, 3829–3835 (2010)CrossRefGoogle Scholar
  10. 10.
    X.J. Ju, L. Liu, R. Xie, C.H. Niu, L.Y. Chu, Polymer 50, 922–929 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, J. Nie, B. Chang, Y. Sun, W. Yang, Biomacromolecules 14, 3034–3046 (2013)CrossRefGoogle Scholar
  12. 12.
    V.C. Lopez, S.L. Raghavan, M.J. Snowden, React. Funct. Polym. 58, 175–185 (2004)CrossRefGoogle Scholar
  13. 13.
    V.C. Lopez, J. Hadgraft, M.J. Snowden, Int. J. Pharm. 292, 137–147 (2005)CrossRefGoogle Scholar
  14. 14.
    D. Crespy, R.M. Rossi, Polym. Int. 56, 1461–1468 (2007)CrossRefGoogle Scholar
  15. 15.
    N.I. Shtanko, W. Lequieu, E.J. Goethals, F.E. Prez, Polym. Int. 52, 1605–1610 (2003)CrossRefGoogle Scholar
  16. 16.
    S. Shah, A. Pal, R. Gude, S. Devi, Eur. Polym. J. 46, 958–967 (2010)CrossRefGoogle Scholar
  17. 17.
    N.S. Rejinold, M. Muthunarayanan, V.V. Divyarani, P.R. Sreerekha, K.P. Chennazhi, S.V. Nair, J. Colloid Interface Sci. 360, 39–51 (2011)CrossRefGoogle Scholar
  18. 18.
    V. Boyko, A. Pich, Y. Lu, S. Richter, K.F. Arndt, H.J.P. Adler, Polymer 44, 7821–7827 (2003)CrossRefGoogle Scholar
  19. 19.
    J.B. Thorne, G.J. Vine, M.J. Snowden, Colloid Polym. Sci. 289, 625–646 (2011)CrossRefGoogle Scholar
  20. 20.
    C. Ramkissoon-Ganorkar, F. Liu, M. Baudys, S.W. Kim, J. Controlled Release 59, 287–298 (1999)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, W. Zhu, B. Wang, J. Ding, J Control Release 105, 260–268 (2005)CrossRefGoogle Scholar
  22. 22.
    F. Meeussen, E. Nies, H. Berghmans, S. Verbrugghe, E. Guethals, F. Du Prez, Polymer 41, 8597–8602 (2000)CrossRefGoogle Scholar
  23. 23.
    Z. Nart, N. Kayaman Apohan, J. Polym. Res. 18, 869–874 (2011)CrossRefGoogle Scholar
  24. 24.
    J.P.K. Tan, C.H. Goh, K.C. Tam, Eur. J. Pharm. Sci. 32, 340–348 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Lou, S. Gao, W. Wang, M. Zhang, Q. Zhang, C. Wang, C. Li, D. Kong, J. Appl. Polym. Sci. 131, 1–7 (2014). doi: 10.1002/app.41146 CrossRefGoogle Scholar
  26. 26.
    H. Vihola, A. Laukkanen, J. Hirvonen, H. Tenhu, Eur. J. Pharm. Sci. 16, 69–74 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bengi Özkahraman
    • 1
  • Işıl Acar
    • 2
  • Mehmet Koray Gök
    • 2
  • Gamze Güçlü
    • 2
  1. 1.Polymer Engineering Department, Faculty of EngineeringHitit UniversityÇorumTurkey
  2. 2.Department of Chemical Engineering, Faculty of EngineeringIstanbul UniversityAvcılar, IstanbulTurkey

Personalised recommendations