Skip to main content
Log in

N-vinylcaprolactam-based microgels: synthesis, characterization and drug release applications

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, N-vinylcaprolactam, metacrylic acid sodium salt and itaconic acid sodium salt-based copolymeric and terpolymeric microgels were synthesized by precipitation polymerization method with 2,2′-azobis(2-methylpropioamidine) dihydrochloride as initiator. Then these microgels were characterized by SEM technique, cloud points and colloidal properties determinations. Volume phase transitions of copolymeric and terpolymeric N-vinylcaprolactam-based microgels are determined at an interval of 32–37 °C. Rhodamine B (model drug) and Nadalol (beta-blocker drug) were used to investigate the drug loading and release behavior of microgels. It is concluded that model drug loading capacity and release amount changed with the presence and amount of itaconic acid sodium salt in the microgel structure. In addition, the maximum drug release amount of microgels was found to be 58 and 55 % for Rhodamine B and Nadolol, respectively. As a result, we can say that the microgels obtained in this study are suitable for drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Chaterji, I.K. Kwon, K. Park, Prog. Polym. Sci. 32, 1083–1122 (2007)

    Article  CAS  Google Scholar 

  2. J. Kopecek, Nature 417, 388–391 (2002)

    Article  CAS  Google Scholar 

  3. S. Zhou, B. Chu, J. Phys. Chem. B 102, 1364–1371 (1998)

    Article  CAS  Google Scholar 

  4. I. Varga, T. Gilanyi, R. Meszaros, G. Filipcsei, M. Zrinyi, J. Phys. Chem. B 105, 9071–9076 (2001)

    Article  CAS  Google Scholar 

  5. R. Pelton, Adv. Colloid Interface Sci. 85, 1–33 (2000)

    Article  CAS  Google Scholar 

  6. B.R. Saunders, N. Laajam, E. Daly, S. Teow, X. Hu, R. Stepto, Adv. Colloid Interface Sci. 147–148, 251–262 (2009)

    Article  Google Scholar 

  7. B.R. Saunders, B. Vincent, Adv. Colloid Interface Sci. 80, 1–25 (1999)

    Article  CAS  Google Scholar 

  8. A. Imaz, J. Forcada, J. Polym. Sci., Part A: Polym. Chem. 46, 2766–2772 (2008)

    Article  CAS  Google Scholar 

  9. S. Berger, R. Singh, J.D. Sudha, H.J. Adler, A. Pich, Polymer 51, 3829–3835 (2010)

    Article  CAS  Google Scholar 

  10. X.J. Ju, L. Liu, R. Xie, C.H. Niu, L.Y. Chu, Polymer 50, 922–929 (2009)

    Article  CAS  Google Scholar 

  11. Y. Wang, J. Nie, B. Chang, Y. Sun, W. Yang, Biomacromolecules 14, 3034–3046 (2013)

    Article  CAS  Google Scholar 

  12. V.C. Lopez, S.L. Raghavan, M.J. Snowden, React. Funct. Polym. 58, 175–185 (2004)

    Article  CAS  Google Scholar 

  13. V.C. Lopez, J. Hadgraft, M.J. Snowden, Int. J. Pharm. 292, 137–147 (2005)

    Article  CAS  Google Scholar 

  14. D. Crespy, R.M. Rossi, Polym. Int. 56, 1461–1468 (2007)

    Article  CAS  Google Scholar 

  15. N.I. Shtanko, W. Lequieu, E.J. Goethals, F.E. Prez, Polym. Int. 52, 1605–1610 (2003)

    Article  CAS  Google Scholar 

  16. S. Shah, A. Pal, R. Gude, S. Devi, Eur. Polym. J. 46, 958–967 (2010)

    Article  CAS  Google Scholar 

  17. N.S. Rejinold, M. Muthunarayanan, V.V. Divyarani, P.R. Sreerekha, K.P. Chennazhi, S.V. Nair, J. Colloid Interface Sci. 360, 39–51 (2011)

    Article  Google Scholar 

  18. V. Boyko, A. Pich, Y. Lu, S. Richter, K.F. Arndt, H.J.P. Adler, Polymer 44, 7821–7827 (2003)

    Article  CAS  Google Scholar 

  19. J.B. Thorne, G.J. Vine, M.J. Snowden, Colloid Polym. Sci. 289, 625–646 (2011)

    Article  CAS  Google Scholar 

  20. C. Ramkissoon-Ganorkar, F. Liu, M. Baudys, S.W. Kim, J. Controlled Release 59, 287–298 (1999)

    Article  CAS  Google Scholar 

  21. Y. Zhang, W. Zhu, B. Wang, J. Ding, J Control Release 105, 260–268 (2005)

    Article  CAS  Google Scholar 

  22. F. Meeussen, E. Nies, H. Berghmans, S. Verbrugghe, E. Guethals, F. Du Prez, Polymer 41, 8597–8602 (2000)

    Article  CAS  Google Scholar 

  23. Z. Nart, N. Kayaman Apohan, J. Polym. Res. 18, 869–874 (2011)

    Article  CAS  Google Scholar 

  24. J.P.K. Tan, C.H. Goh, K.C. Tam, Eur. J. Pharm. Sci. 32, 340–348 (2007)

    Article  CAS  Google Scholar 

  25. S. Lou, S. Gao, W. Wang, M. Zhang, Q. Zhang, C. Wang, C. Li, D. Kong, J. Appl. Polym. Sci. 131, 1–7 (2014). doi:10.1002/app.41146

    Article  Google Scholar 

  26. H. Vihola, A. Laukkanen, J. Hirvonen, H. Tenhu, Eur. J. Pharm. Sci. 16, 69–74 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is a part of the Ph.D. thesis titled “Usage of Polymeric Hydrogels and Microgels in Drug Release Applications”, prepared at Istanbul University, Institute of Science, and supported by the Research Fund of the Istanbul University, Project Number: 29693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Güçlü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkahraman, B., Acar, I., Gök, M.K. et al. N-vinylcaprolactam-based microgels: synthesis, characterization and drug release applications. Res Chem Intermed 42, 6013–6024 (2016). https://doi.org/10.1007/s11164-016-2422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2422-1

Keywords

Navigation