Research on Chemical Intermediates

, Volume 42, Issue 1, pp 269–288 | Cite as

Syngas production from methane dry reforming over Ni/Al2O3 catalyst

  • Kavineshshen Selvarajah
  • Nguyen Huu Huy Phuc
  • Bawadi Abdullah
  • Feraih Alenazey
  • Dai-Viet N. Vo


We evaluated dry reforming of methane in a tubular fixed-bed reactor at various reaction temperatures from 923 to 973 K using different reactant compositions over 10 % Ni/Al2O3 catalyst prepared by a wet impregnation method. Both NiO and NiAl2O4 phases were formed on the catalyst surface during calcination, and the 10 % Ni/Al2O3 catalyst possessed high surface area of 106.36 m2 g−1 with fine metal dispersion. The low activation energy observed for formation of NiAl2O4 phase during calcination indicated strong interaction between the NiO form and the γ-Al2O3 support. The NiO phase was completely reduced to metallic Ni0 form via H2 reduction. The conversions of CO2 and CH4 increased noticeably with increasing CO2 partial pressure, and the H2/CO ratio was always below unity, regardless of reaction conditions. The yield of H2 was enhanced with growing CO2 partial pressure, approaching a highest value of about 70 %. The heterogeneous nature of the deposited carbon was evident from the coexistence of carbon nanofibers and graphitic carbon. In addition, the amount of filamentous carbon appeared to be slightly less than that of graphitic carbon. However, these deposited carbons were completely removed by O2 at below 900 K during temperature-programmed oxidation.


Dry reforming of methane Ni-based catalysts Syngas H2 production CO2 reforming of methane 



The authors would like to acknowledge the UMP Research Grant Scheme (RDU140374) for financial support of this study. King Abdulaziz City for Science and Technology (KACST) is also acknowledged for conducting H2-TPR measurements.


  1. 1.
    M. Ni, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energy 32, 3238 (2007)CrossRefGoogle Scholar
  2. 2.
    H.J. Alves, C.B. Junior, R.R. Niklevicz, E.P. Frigo, M.S. Frigo, C.H. Coimbra-Araujo, Int. J. Hydrogen Energy 38, 5215 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy Fuel 19, 2098 (2005)CrossRefGoogle Scholar
  4. 4.
    J.N. Armor, Appl. Catal. A Gen. 176, 159 (1999)CrossRefGoogle Scholar
  5. 5.
    V. Arcotumapathy, D.-V.N. Vo, D. Chesterfield, C.T. Tin, A. Siahvashi, F.P. Lucien, A.A. Adesina, Appl. Catal. A Gen. 479, 87 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Usman, W.M.A. Wan Daud, H.F. Abbas, Renew. Sustain. Energy Rev. 45, 710 (2015)CrossRefGoogle Scholar
  7. 7.
    D.-V.N. Vo, T.-H. Nguyen, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, Catal. Today 175, 450 (2011)CrossRefGoogle Scholar
  8. 8.
    M.C.J. Bradford, M.A. Vannice, Catal. Rev. Sci. Eng. 41, 1 (1999)CrossRefGoogle Scholar
  9. 9.
    I. Tankov, K. Arishtirova, J.M.C. Bueno, S. Damyanova, Appl. Catal. A Gen. 474, 135 (2014)CrossRefGoogle Scholar
  10. 10.
    S.S. Kim, S.M. Lee, J.M. Won, H.J. Yang, S.C. Hong, Chem. Eng. J. 280, 433 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Alipour, M. Rezaei, F. Meshkani, J. Energy Chem. 23, 633 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Sokolov, E.V. Kondratenko, M.-M. Pohl, U. Rodemerck, Int. J. Hydrogen Energy 38, 16121 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, F. Li, Appl. Catal. B Environ. 176–177, 513 (2015)CrossRefGoogle Scholar
  14. 14.
    O.-S. Joo, K.-D. Jung, Bull. Korean Chem. Soc. 23, 1149 (2002)CrossRefGoogle Scholar
  15. 15.
    JCPDS Powder Diffraction File, International Centre for Diffraction Data, Swarthmore (2000)Google Scholar
  16. 16.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  17. 17.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  18. 18.
    U. Oemar, Y. Kathiraser, L. Mo, X.K. Ho, S. Kawi, Catal. Sci. Technol. (2015). doi: 10.1039/C5CY00906E Google Scholar
  19. 19.
    S.Y. Foo, C.K. Cheng, T.-H. Nguyen, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, Catal. Commun. 26, 183 (2012)CrossRefGoogle Scholar
  20. 20.
    S.Y. Foo, C.K. Cheng, T.-H. Nguyen, A.A. Adesina, Catal. Today 164, 221 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Pompeo, D. Gazzoli, N.N. Nichio, Int. J. Hydrogen Energy 34, 2260 (2009)CrossRefGoogle Scholar
  22. 22.
    F.F. de Sousa, H.S.A. de Sousa, A.C. Oliveira, M.C.C. Junior, A.P. Ayala, E.B. Barros, B.C. Viana, J.M. Filho, A.C. Oliveira, Int. J. Hydrogen Energy 37, 3201 (2012)CrossRefGoogle Scholar
  23. 23.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40, 2043 (2002)CrossRefGoogle Scholar
  24. 24.
    W.-W. Liu, S.-P. Chai, A.R. Mohamed, U. Hashim, J. Ind. Eng. Chem. 20, 1171 (2014)CrossRefGoogle Scholar
  25. 25.
    C. Herrero-Latorre, J. Álvarez-Méndez, J. Barciela-García, S. García-Martín, R.M. Peña-Crecente, Anal. Chim. Acta 853, 77 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Luo, D. Li, W. Wu, Y. Zhang, C. Pan, RSC Adv. 4, 3090 (2014)CrossRefGoogle Scholar
  27. 27.
    L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106-1 (2006)CrossRefGoogle Scholar
  28. 28.
    C.H. Bartholomew, Appl. Catal. A Gen. 212, 17 (2001)CrossRefGoogle Scholar
  29. 29.
    A.P.E. York, T.-C. Xiao, M.L.H. Green, Catal. Rev. 49, 511 (2007)CrossRefGoogle Scholar
  30. 30.
    A. Horváth, G. Stefler, O. Geszti, A. Kienneman, A. Pietraszek, L. Guczi, Catal. Today 169, 102 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kavineshshen Selvarajah
    • 1
  • Nguyen Huu Huy Phuc
    • 2
  • Bawadi Abdullah
    • 3
  • Feraih Alenazey
    • 4
  • Dai-Viet N. Vo
    • 1
  1. 1.Faculty of Chemical and Natural Resources EngineeringUniversiti Malaysia PahangGambang, KuantanMalaysia
  2. 2.Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyToyohashiJapan
  3. 3.Chemical Engineering DepartmentUniversiti Teknologi PETRONASTronohMalaysia
  4. 4.King Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia

Personalised recommendations