Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 6, pp 5639–5651 | Cite as

Highly selective adsorption of organic dyes onto tungsten trioxide nanowires

  • Zhefei Zhao
  • Niu Ping
  • Jing Di
  • Huajun Zheng
Article

Abstract

The strong selective adsorption property of monoclinic tungsten trioxide nanowires (WO3NWs) towards organic dyes was reported in this paper. The effects of pH, initial concentration and types of dyes were systematically investigated. Particularly, methylene blue (MB) was more inclined to be adsorbed in acid solution and a maximum uptake capacity of 148.6 mg g−1 was achieved. 88 % of MB can be rapidly adsorbed within 70 min. The kinetics, isotherms and thermodynamics for the adsorption of MB and methyl orange (MO) were well described. The kinetic adsorption on WO3NWs followed a pseudo second-order model (R 2 = 0.998) and the Langmuir isotherm (R 2 = 0.992) agreed very well with the experimental data. The negative values of ΔG 0 at various temperatures (−5.656, −5.792, and −5.946 kJ mol−1) and ΔH 0 (−1.343 kJ mol−1) implied that the adsorption reaction was spontaneous and exothermic. Specific surface area (864.153 m2 g−1) and surface acidic groups of WO3NWs enabled excellent adsorption performance. A highly selective adsorption mechanism involving the electrostatic interaction between hydroxyls on the WO3NWs' surfaces and different dye molecules was proposed.

Keywords

Tungsten trioxide nanowires Selective adsorption Kinetics Thermodynamics Mechanisms 

Notes

Acknowledgments

The financial support from Zhejiang scientific and technological projects (No. 2009R50002-20) is gratefully acknowledged.

Supplementary material

11164_2015_2392_MOESM1_ESM.doc (7.3 mb)
Supplementary material 1 (DOC 7453 kb)

References

  1. 1.
    V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Colloid Interface 193–194, 24 (2013)CrossRefGoogle Scholar
  2. 2.
    V.K. Gupta, I. Ali, V.K. Saini, T.V. Gerven, B.V. Bruggen, C. Vandecasteele, Ind. Eng. Chem. Res. 44, 3655 (2005)CrossRefGoogle Scholar
  3. 3.
    V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Mater. Sci. Eng., C 32, 12 (2012)CrossRefGoogle Scholar
  4. 4.
    V.K. Gupta, P. Singh, N. Rahman, J. Colloid Interface Sci. 275, 398 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, J. Colloid Interface Sci. 342, 518 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, J. Colloid Interface Sci. 344, 497 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Bioresour. Technol. 99, 2938 (2008)CrossRefGoogle Scholar
  8. 8.
    V.K. Gupta, S. Sharma, I.S. Yadav, D. Mohan, J. Chem. Technol. Biotechnol. 71, 180 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173, 153 (2012)CrossRefGoogle Scholar
  10. 10.
    V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Mater. Sci. Eng., C 31, 1062 (2011)CrossRefGoogle Scholar
  11. 11.
    S.F. Xie, B.J. Zheng, Q. Kuang, X. Wang, Z.X. Xie, L.S. Zheng, CrystEngComm 14, 7715 (2012)CrossRefGoogle Scholar
  12. 12.
    V.K. Gupta, I. Ali, T.A. Saleh, A. Nayaka, S. Agarwal, RSC Adv. 2, 6380 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, J. Colloid Interface Sci. 340, 16 (2010)CrossRefGoogle Scholar
  14. 14.
    O. Türgay, G. Ersöz, S. Atalay, J. Forss, U. Welander, Sep. Purif. Technol. 79, 26 (2011)CrossRefGoogle Scholar
  15. 15.
    T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 371, 101 (2012)CrossRefGoogle Scholar
  16. 16.
    V.K. Gupta, A. Nayak, Chem. Eng. J. 180, 81 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Khania, M.K. Rofoueia, P. Arabb, V.K. Guptac, Z. Vafaeia, J. Hazard. Mater. 183, 402 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Mittal, D. Kaur, A. Malviya, J. Mittal, V.K. Gupta, J. Colloid Interface Sci. 337, 345 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Ahmaruzzaman, V.K. Gupta, Ind. Eng. Chem. Res. 50, 13589 (2011)CrossRefGoogle Scholar
  20. 20.
    L.H. Ai, C.Y. Zhang, Z.L. Chen, J. Hazard. Mater. 192, 1515 (2011)CrossRefGoogle Scholar
  21. 21.
    T.A. Saleha, S. Agarwalb, V.K. Gupta, Appl. Catal. B Environ. 106, 46 (2011)Google Scholar
  22. 22.
    S. Jeo, K.J. Kong, J. Mater. Chem. 20, 10146 (2010)CrossRefGoogle Scholar
  23. 23.
    J.Y. Luo, Z. Cao, F. Chen, L. Li, Y.R. Lin, B.W. Liang, Q.G. Zeng, M. Zhang, X. He, C. Li, Appl. Surf. Sci. 287, 270 (2013)CrossRefGoogle Scholar
  24. 24.
    F. Wang, C.H. Li, J.C. Yu, Sep. Purif. Technol. 91, 103 (2012)CrossRefGoogle Scholar
  25. 25.
    Q. Sun, F. Xiao, S.Y. Ren, Z.J. Dong, J.D. Wang, X.T. Su, Ceram. Int. 40, 11447 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Li, X.H. Liu, Q.F. Han, X.X. Yao, X. Wang, J. Mater. Chem. A 1, 1246 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Zhu, S.L. Wang, S.H.X. Xie, H. Li, Chem. Commun. 47, 4403 (2011)CrossRefGoogle Scholar
  28. 28.
    B.X. Liu, J.S. Wang, J.S. Wu, H.Y. Li, Z.F. Li, M.L. Zhou, T.Y. Zuo, J. Mater. Chem. A 2, 1947 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Songara, V. Gupta, M.K. Patra, J. Singh, L. Saini, G.S. Gowd, S.R. Vadera, N. Kumar, J. Phys. Chem. Solids 73, 851 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Ingham, S.V. Chon, J.L. Tallon, J. Phys. Chem. B 109, 4936 (2005)CrossRefGoogle Scholar
  31. 31.
    I.M. Szilágyi, E. Santala, M. Heikkilä, M. Kemell, T. Nikitin, L. Khriachtchev, M. Räsänen, M. Ritala, M. Leskelä, J. Therm. Anal. Calorim. 105, 73 (2011)CrossRefGoogle Scholar
  32. 32.
    Z.H. Li, P.H. Chang, W.T. Jiang, J.S. Jean, H. Hong, Chem. Eng. J. 168, 1193 (2011)CrossRefGoogle Scholar
  33. 33.
    V. Vadivelan, K. Vasanth Kumar, J. Colloid Interface Sci. 286, 90 (2005)CrossRefGoogle Scholar
  34. 34.
    W. Xiao, W.T. Liu, X.H. Mao, H. Zhu, D.H. Wang, J. Mater. Chem. A. 1, 1261 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Ghaedi, A. Hassanzadeh, S.N. Kokhdan, J. Chem. Eng. Data 56, 2511 (2011)CrossRefGoogle Scholar
  36. 36.
    Q.S. Liu, T. Zheng, N. Li, P. Wang, G. Abulikemu, Appl. Surf. Sci. 256, 3309 (2010)CrossRefGoogle Scholar
  37. 37.
    Y.S. Ho, G. Mckey, The sorption of lead(II) ions on peat. Water Res. 33, 578–584 (1999)CrossRefGoogle Scholar
  38. 38.
    I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916)CrossRefGoogle Scholar
  39. 39.
    H.M.F. Freundlich, Z. Phys. Chem. 57, 385 (1906)Google Scholar
  40. 40.
    C.K. Lim, H.H. Bay, C.H. Neoh, A. Aris, Z.A. Majid, Z. Ibrahim, Environ. Sci. Pollut. Res. 20, 7243 (2013)CrossRefGoogle Scholar
  41. 41.
    X.Y. Jin, B. Yu, Z.L. Chen, J.M. Arocena, R.W. Thring, J. Colloid Interface Sci. 435, 15 (2014)CrossRefGoogle Scholar
  42. 42.
    J.P. Wang, H.M. Feng, H.Q. Yu, J. Hazard. Mater. 144, 200 (2007)CrossRefGoogle Scholar
  43. 43.
    L. Liu, B. Zhang, Y.R. Zhang, Y.J. He, L.H. Huang, S.Z. Tan, X. Cai, J. Chem. Eng. Data 60, 1270 (2015)CrossRefGoogle Scholar
  44. 44.
    C. Petie, T.J. Bandosz, Environ. Sci. Technol. 42, 3033 (2008)CrossRefGoogle Scholar
  45. 45.
    M. Anik, T. Cansizoglu, J. Appl. Electrochem. 36, 603 (2006)CrossRefGoogle Scholar
  46. 46.
    D.D. Macdonald, E. Sikora, J. Sikora, Electrochim. Acta 43, 2851 (1998)CrossRefGoogle Scholar
  47. 47.
    Y.P. Qiu, H.Y. Cheng, C. Xu, G.D. Sheng, Water Res. 42, 567 (2008)CrossRefGoogle Scholar
  48. 48.
    A.P. Malloy, G.J. Browning, S.W. Donne, J. Colloid Interface Sci. 285, 653 (2005)CrossRefGoogle Scholar
  49. 49.
    W.H.V.R.T. Hiemstra, G.H. Bolt, J. Colloid Interface Sci. 133, 91 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Zhefei Zhao
    • 1
  • Niu Ping
    • 1
  • Jing Di
    • 1
    • 2
  • Huajun Zheng
    • 1
    • 2
  1. 1.Department of Applied ChemistryZhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations