Research on Chemical Intermediates

, Volume 42, Issue 6, pp 5309–5328 | Cite as

Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation, characterization, adsorption, kinetics, and thermodynamics

  • Bahareh Baheri
  • Raziyeh Ghahremani
  • Mohammad Peydayesh
  • Mahnaz Shahverdi
  • Toraj Mohammadi


In pursuit of improving performance of the methylene blue adsorption process, the potential of a novel 4A-zeolite/polyvinyl alcohol (PVA) membrane adsorbent was investigated. Adding 4A-zeolite particles to the PVA membrane adsorbent provided an effective structure for the adsorptive membrane in dye removal processes. Effect of zeolite content was also studied via synthesis of different mixed matrix membrane adsorbents (MMMAs) with 5, 10, 15, and 20 wt% 4A-zeolite content. Morphology of MMMAs was analyzed by scanning electron microscope and the intermolecular interactions were determined by Fourier transform infrared spectroscopy. X-ray diffraction was performed to determine the crystal structure of MMMAs. For the sake of finding optimum condition, the adsorption capacity was examined at various operating parameters, such as contact time, temperature, pH, and initial concentration. The maximum value of the adsorption capacity (q e) of 41.08 mg g−1 and the highest removal efficiency of 87.41 % were obtained by applying 20 wt% loading of 4A-zeolite. The experimental data were fitted well with the Freundlich adsorption isotherm model (R 2 = 0.9917) compared with the Langmuir (R 2 = 0.9489) and the Tempkin (R 2 = 0.8886) adsorption isotherm models, and the adsorption kinetic data verified the best fitting with the pseudo-second-order model (R 2 = 0.9999). The estimated data for Gibb’s free energy (ΔG°) showed that the adsorption process is spontaneous at lower temperature values and non-spontaneous at higher temperature values. Other evaluated thermodynamic parameters such as changing in enthalpy (ΔH°) and entropy (ΔS°) revealed that the adsorption process is exothermic with an increase in orderliness at the solid/solution interface.


Membrane adsorbent Dye removal 4A-zeolite PVA MB 


  1. 1.
    M. Zendehdel, A. Barati, H. Alikhani, A. Hekmat, Iran. J. Environ. Health Sci. Eng. 7, 431–436 (2010)Google Scholar
  2. 2.
    X. Zhang, P. Zhang, Z. Wu, L. Zhang, G. Zeng, C. Zhou, Colloids Surf. A 435, 85–90 (2013)CrossRefGoogle Scholar
  3. 3.
    R. Ansari, B. Seyghali, A. Mohammad-khah, M.A. Zanjanchi, Sep. Sci. Technol. 47, 1802–1812 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Haider, F.F. Binagag, A. Haider, A. Mahmood, N. Shah, W.A. Al-Masry, S.U.-D. Khan, S.M. Ramay, Desalination and Water Treatment, 1–11 (2014)Google Scholar
  5. 5.
    P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Chem. Pap. 67, 722–729 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Wang, J. Li, L. Wang, X. Sun, J. Huang, Chin. J. Chem. Eng. 17, 513–521 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Auta, B.H. Hameed, Chem. Eng. J. 237, 352–361 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Fang, X. Huang, X. Ouyang, X. Wang, Chem. Eng. J. 270, 309–319 (2015)CrossRefGoogle Scholar
  9. 9.
    Z.-Y. Zhang, X.-C. Xu, Chem. Eng. J. 256, 85–92 (2014)CrossRefGoogle Scholar
  10. 10.
    C.-H. Lin, C.-H. Gung, J.-Y. Wu, S.-Y. Suen, J. Taiwan Inst. Chem. Eng. 51, 119–126 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247–255 (2001)CrossRefGoogle Scholar
  12. 12.
    X.S. Wang, Y. Zhou, Y. Jiang, C. Sun, J. Hazard. Mater. 157, 374–385 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Giwa, A. Ogunribido, Brit. J. Appl. Sci. Technol. 2, 296–310 (2012)CrossRefGoogle Scholar
  14. 14.
    R. Ghahremani, B. Baheri, M. Peydayesh, S. Asarehpour, T. Mohammadi, Research on Chemical Intermediates, 1–18 (2015)Google Scholar
  15. 15.
    M. Peydayesh, S. Asarehpour, T. Mohammadi, O. Bakhtiari, Chem. Eng. Res. Des. 91, 1335–1342 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Rezakazemi, A. Ebadi Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, Prog. Polym. Sci. 39, 817–861 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Majdan, S. Pikus, M. Kowalska-Ternes, A. Gładysz-Płaska, P. Staszczuk, L. Fuks, H. Skrzypek, J. Colloid Interface Sci. 262, 321–330 (2003)CrossRefGoogle Scholar
  18. 18.
    B. Baheri, M. Shahverdi, M. Rezakazemi, E. Motaee, T. Mohammadi, Chem. Eng. Commun. 202, 316–321 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Shahverdi, B. Baheri, M. Rezakazemi, E. Motaee, T. Mohammadi, Polym. Eng. Sci. 53, 1487–1493 (2013)CrossRefGoogle Scholar
  20. 20.
    A.A. Kittur, M.Y. Kariduraganavar, U.S. Toti, K. Ramesh, T.M. Aminabhavi, J. Appl. Polym. Sci. 90, 2441–2448 (2003)CrossRefGoogle Scholar
  21. 21.
    S. Shirazian, S. Ghafarnejad Parto, S.N. Ashrafizadeh, Int. J. Appl. Ceram. Technol. 11, 793–803 (2014)CrossRefGoogle Scholar
  22. 22.
    L.R. Rad, A. Momeni, B.F. Ghazani, M. Irani, M. Mahmoudi, B. Noghreh, Chem. Eng. J. 256, 119–127 (2014)CrossRefGoogle Scholar
  23. 23.
    Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya, M. Eral, Hydrometallurgy 90, 13–18 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Aluigi, F. Rombaldoni, C. Tonetti, L. Jannoke, Study of methylene blue adsorption on keratin nanofibrous membranes. J. Hazard. Mater. 268, 156–165 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Umoren, U. Etim, A. Israel, Adsorption of methylene blue from industrial effluent using poly (vinyl alcohol). J. Mater. Environ. Sci. 4, 75–86 (2013)Google Scholar
  26. 26.
    L. Jin, Langmuir 18, 9765–9770 (2002)CrossRefGoogle Scholar
  27. 27.
    K.S. Hui, C.Y.H. Chao, S.C. Kot, J. Hazard. Mater. 127, 89–101 (2005)CrossRefGoogle Scholar
  28. 28.
    X. Han, W. Wang, X. Ma, Chem. Eng. J. 171, 1–8 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Zhang, D. Cai, G. Zhang, C. Cai, C. Zhang, G. Qiu, K. Zheng, Z. Wu, Appl. Clay Sci. 83–84, 137–143 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Y. Kang, B. Mu, A. Wang, Chem. Eng. J. 237, 403–410 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Bulut, H. Aydın, Desalination 194, 259–267 (2006)CrossRefGoogle Scholar
  32. 32.
    Y.S. Ho, G. McKay, Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  33. 33.
    D. Pathania, S. Sharma, P. Singh, Arab. J. Chem. In Press, Corrected Proof (2013)Google Scholar
  34. 34.
    Y. Li, Q. Du, T. Liu, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr. Polym. 95, 501–507 (2013)CrossRefGoogle Scholar
  35. 35.
    C.-H. Wang, B.J. Hwang, Chem. Eng. Sci. 55, 4311–4321 (2000)CrossRefGoogle Scholar
  36. 36.
    M. Ghaedi, M.D. Ghazanfarkhani, S. Khodadoust, N. Sohrabi, M. Oftade, J. Ind. Eng. Chem. 20, 2317–2324 (2014)CrossRefGoogle Scholar
  37. 37.
    Z. Kong, X. Li, J. Tian, J. Yang, S. Sun, J. Environ. Manage. 134, 109–116 (2014)CrossRefGoogle Scholar
  38. 38.
    A.M.A. Shehata, Removal of methylene blue dye from aqueous solutions by using treated animal bone as a cheap natural adsorbent. Int. J. Emerg. Technol. Adv. Eng. 3, 1–7 (2013)Google Scholar
  39. 39.
    Z.A. AlOthman, M.A. Habila, R. Ali, A.A. Ghafar, M.S.E. Hassouna, Valorization of two waste streams into activated carbon and studying its adsorption kinetics, equilibrium isotherms, and thermodynamics for methylene blue removal. Arab. J. Chem. (2013)Google Scholar
  40. 40.
    N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. (2011)Google Scholar
  41. 41.
    M. Auta, B.H. Hameed, Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem. Eng. J. 198–199, 219–227 (2012)CrossRefGoogle Scholar
  42. 42.
    E.O. Oyelude, F. Appiah-Takyi, Removal of methylene blue from aqueous solution using alkali-modified malted sorghum mash. Turk. J. Eng. Environ. Sci. 36, 161–169 (2012)Google Scholar
  43. 43.
    C.H. Weng, Y. Pan, Adsorption of a cationic dye (methylene blue) onto spent activated clay. J. Hazard. Mater. 144, 355–362 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Bahareh Baheri
    • 1
  • Raziyeh Ghahremani
    • 1
  • Mohammad Peydayesh
    • 1
  • Mahnaz Shahverdi
    • 1
  • Toraj Mohammadi
    • 1
  1. 1.Research and Technology Centre of Membrane Processes, Faculty of Chemical EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations