Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 5, pp 4859–4878 | Cite as

Thermal dehydration kinetics and characterization of synthesized potassium borates

  • Miguel Ortega Asensio
  • Meral Yildirim
  • Fatma Tugce Senberber
  • Azmi Seyhun Kipcak
  • Emek Moroydor Derun
Article

Abstract

In this study, potassium pentaborate (santite: KB5O8·4H2O), with a powder diffraction number of 01-072-1688 was synthesized from potassium carbonate (K2CO3), boric acid (H3BO3) and boron oxide (B2O3) with reaction efficiencies between 84.88 and 95.11 %, through a hydrothermal route. Reaction temperatures and times were varied between 60–90 °C and 15–120 min. Synthesized minerals were characterized by X-ray diffraction, Fourier transform infrared and Raman spectroscopies, while surface morphologies were determined by scanning electron microscopy. Thermal dehydration behavior of santite was determined by thermal gravimetry and differential thermal analysis. From the results, santite lost its crystal water via a two-step process between 50 and 450 °C. Activation energies (E a) were calculated by using four non-isothermal kinetic methods and found to be 110.12 and 202.43 kJ/mol by the Coats–Redfern method, 107.77 and 304.18 kJ/mol by the Doyle method, 158.82 and 154.50 kJ/mol by the Kissinger–Akahira–Sunose method, and 158.07 and 156.76 kJ/mol by the Ozawa–Flynn–Wall method for the steps 1 and 2, respectively.

Keywords

Hydrothermal Non-isothermal kinetic Potassium borate Thermal dehydration 

References

  1. 1.
    A.S. Kipcak, E. Moroydor Derun, J. Piskin, J. Chem. 2013, 329238 (2013)Google Scholar
  2. 2.
    E.M. Derun, A.S. Kipcak, J. Radioanal. Nucl. Chem. 292, 871 (2012)CrossRefGoogle Scholar
  3. 3.
    L.D. Pye, V.D. Frechette, N.J. Kreidl, Borate Glasses: Structure, Properties, Applications, 1st edn. (Plenum, New York, 1978)CrossRefGoogle Scholar
  4. 4.
    G. Yang, Z. Li, Y. Zhang, Chem. Eng. Process. 44, 1216 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Thamizharasan, S.X. Jesu Raja, F.P. Xavier, P. Sagayaraj, J. Cryst. Growth 218, 323 (2000)CrossRefGoogle Scholar
  6. 6.
    S. Merlino, F. Sartori, Contr. Mineral. Petrol. 27, 159 (1970)CrossRefGoogle Scholar
  7. 7.
    W.A. Gale, Method of preparing potassium pentaborate. Patented Oct. 5, 1937 (No. 45, 57)Google Scholar
  8. 8.
    W.M. MacDonald, A.-C. Anderson, J. Schoreder, Phys. Rev. B 32, 1208 (1985)CrossRefGoogle Scholar
  9. 9.
    Y.S.M. Alajerami, S. Hashim, W.M.S. Wan Hassan, A.T. Ramli, J. Mol. Struct. 1026, 159 (2012)CrossRefGoogle Scholar
  10. 10.
    P.R. Binu, C.M. Joseph, C.S. Menon, K. Shreekrishnakumar, Mater. Lett. 52, 323 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Hashim, Y.S.M. Alajerami, A.T. Ramli, S.K. Ghoshal, M.A. Saleh, A.B. AbdulKadir, M.I. Saripan, K. Alzimami, D.A. Bradley, M.H.A. Mhareb, Appl. Radiat. Isotopes 91, 126 (2014)CrossRefGoogle Scholar
  12. 12.
    O. Sahin, E.S. Cennetkusu, H. Dolas, M. Ozdemir, Thermochim. Acta 440, 7 (2005)CrossRefGoogle Scholar
  13. 13.
    E.L. Belokoneva, S.Y. Stefanovich, O.V. Dimitrova, J. Solid State Chem. 195, 79 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Wang, Y.G. Sun, S. Zheng, G. Yang, Z. Anorg, Allg. Chem. 632, 1586 (2006)CrossRefGoogle Scholar
  15. 15.
    S.A. Rajasekar, K. Thamizharasan, A. Joseph Arul Pragasam, J. Packiam Julius, P. Sagayaraj, J. Cryst. Growth 247, 199 (2003)CrossRefGoogle Scholar
  16. 16.
    H. Gurbuz, G. Badem, A.N. Bulutcu, J. Cryst. Growth 283, 222 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Tunc, H. Ersahan, S. Yapici, S. Colak, J. Therm. Anal. 48, 403 (1997)CrossRefGoogle Scholar
  18. 18.
    A.K. Galwey, Thermochim. Acta 355, 181 (2000)CrossRefGoogle Scholar
  19. 19.
    F. Sevim, F. Demir, M. Bilen, H. Okur, Korean J. Chem. Eng. 23, 736 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Kantürk, M. Sarı, S. Piskin, Korean J. Chem. Eng. 6, 1331 (2008)CrossRefGoogle Scholar
  21. 21.
    E.M. Derun, F.T. Senberber, Sci. World J. 2014, 985185 (2014)Google Scholar
  22. 22.
    E.M. Derun, A.S. Kipcak, F.T. Senberber, M.S. Yilmaz, Res. Chem. Intermed. 41, 853 (2015)CrossRefGoogle Scholar
  23. 23.
    A.K. Figen, M.S. Yılmaz, S. Piskin, Mater. Charact. 6(61), 640–647 (2010)CrossRefGoogle Scholar
  24. 24.
    A.S. Kipcak, F.T. Senberber, E.M. Derun, N. Tugrul, S. Piskin, Res. Chem. Intermed. 41, 9129 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Touboul, E. Betourne, Solid State Ionics 84, 189–197 (1996)CrossRefGoogle Scholar
  26. 26.
    Y. Erdogan, A. Zeybek, A. Sahin, A. Demirbas, Thermochim. Acta 326, 99 (1999)CrossRefGoogle Scholar
  27. 27.
    M.S. Yılmaz, S. Piskin, J. Chem. Soc. Pak. 34(3), 526 (2012)Google Scholar
  28. 28.
    J. Yongzhong, G. Shiyang, X. Shuping, L. Lun, Spectrochim. Acta A 56, 1291 (2000)CrossRefGoogle Scholar
  29. 29.
    L. Jun, X. Shuping, G. Shiyang, Spectrochim. Acta 51A, 519 (1995)CrossRefGoogle Scholar
  30. 30.
    A.S. Kipcak, D.Y. Baysoy, E.M. Derun, S. Piskin, Adv. Mater. Sci. Eng. 2013, 747383 (2013) Google Scholar
  31. 31.
    A.S. Kipcak, E.M. Derun, S. Piskin, Turk. J. Chem. 38, 792 (2014)CrossRefGoogle Scholar
  32. 32.
    A.S. Kipcak, M. Yildirim, S.A. Yuksel, E.M. Derun, S. Piskin, Adv. Mater. Sci. Eng. 2014, 819745 (2014)Google Scholar
  33. 33.
    H.S. Fogler, Element of Chemical Reaction Engineering, 3rd edn. (Prentice-Hall, New Jersey, 1999)Google Scholar
  34. 34.
    M.S. Yilmaz, A.K. Figen, S. Piskin, Res. Chem. Intermed. 41, 1893 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Miguel Ortega Asensio
    • 1
  • Meral Yildirim
    • 2
  • Fatma Tugce Senberber
    • 2
  • Azmi Seyhun Kipcak
    • 2
  • Emek Moroydor Derun
    • 2
  1. 1.Department of Chemical EngineeringUniversidad de ValladolidValladolidSpain
  2. 2.Department of Chemical Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations