Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 1, pp 31–45 | Cite as

Enantioselective hydrogenation of α-phenylcinnamic acids over cinchonidine-modified Pd/C commercial catalysts

  • Haruka Sato
  • Takuya Mameda
  • Kengo Nakai
  • Tomonori Misaki
  • Yuichi Haruyama
  • Seiji Sonobe
  • Takeshi Kubota
  • Yasuaki Okamoto
  • Takashi Sugimura
Article

Abstract

Enantioselective hydrogenation of α-phenylcinnamic acid (PCA) and p,p′-dimethoxyphenylcinnamic acid (DMPCA) was studied over a variety of commercial 5 % Pd/C catalysts to reveal catalyst properties suitable for obtaining high enantioselectivity. The catalysts were characterized by CO adsorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). It is confirmed that pretreatment at 353 K under atmospheric pressure of H2 before modification with cinchonidine is very effective for all the Pd/C catalysts used here to improve the selectivity and reaction rate. It is suggested that the distribution of Pd metal particles is crucial to attain high selectivity (ee% = 79 ± 1 for PCA, 89 ± 2 for DMPCA): a uniform or eggshell-type distribution of Pd is more suitable than an egg-white or egg-yolk-type distribution. It is also suggested that the dispersion of Pd metal particles controls the enantioselectivity over cinchonidine (CD)-modified Pd/C catalysts. XPS techniques are proposed to provide a convenient method to find desirable catalysts. The choice of such Pd/C catalysts could facilitate high-throughput guided study on highly enantioselective hydrogenation of α,β-unsaturated carboxylic acids.

Keywords

Enantioselective hydrogenation Heterogeneous catalysis Pd/C Cinchonidine α,β-Unsaturated carboxylic acid 

Notes

Acknowledgments

We would like to express our sincere thanks to Evonik Industries AG and N.E. Chemcat Co. for donating the Pd/C catalysts used in the present study.

Supplementary material

11164_2015_2313_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. 1.
    T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 107, 4863 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Baiker, H. U. Blaser, in Handbook of Heterogeneous Catalysis, Eds. G. Ertl, H. Knözinger, J. Weitkamp, VCH, Weinheim, Vol.5, p. 2422 (1997)Google Scholar
  3. 3.
    E. Zhan, C. Chen, Y. Li, W. Shen, Catal. Sci. Technol. 5, 650 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Studer, H.U. Blaser, C. Exner, Adv. Synth. Catal. 345, 45 (2003)CrossRefGoogle Scholar
  5. 5.
    H.U. Blaser, F. Spindler, M. Studer, Appl. Catal. A 221, 119 (2001)CrossRefGoogle Scholar
  6. 6.
    D.Y. Murzin, P. Maki-Arvela, E. Toukoniitty, T. Salmi, Catal. Rev. Sci. Eng. 47, 175 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Izumi, Adv. Catal. 32, 215 (1983)Google Scholar
  8. 8.
    H.U. Blaser, Tetrahedron Asymmetry 2, 843 (1991)CrossRefGoogle Scholar
  9. 9.
    T. Sugimura, Catal. Surv. Jpn. 3, 37 (1999)CrossRefGoogle Scholar
  10. 10.
    Y. Nitta, Top. Catal. 13, 179 (2000)CrossRefGoogle Scholar
  11. 11.
    Y. Nitta, J. Synth. Org. Chem. Jpn. 64, 827 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Tungler, E. Sipos, H. Hada, Curr. Org. Chem. 10, 1569 (2006)CrossRefGoogle Scholar
  13. 13.
    T. Sugimura in Handbook of Asymmetric Heterogeneous Catalysis Eds. K. Ding, Y. Uozumi, Wiley-VCH, Verlag, Weinheim, p. 357 (2008)Google Scholar
  14. 14.
    Y. Nitta, Chem. Lett. 28, 635 (1999)CrossRefGoogle Scholar
  15. 15.
    T.Y. Kim, T. Sugimura, J. Mol. Catal. A 327, 58 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Szöllösi, B. Herman, F. Fulop, M. Bartok, J. Catal. 276, 259 (2010)CrossRefGoogle Scholar
  17. 17.
    G. Szollosi, T. Hanaoka, S. Niwa, F. Mizukami, M. Bartok, J. Catal. 231, 480 (2005)CrossRefGoogle Scholar
  18. 18.
    Z. Makra, G. Szöllösi, M. Bartok, Catal. Today 181, 56 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Meemken, N. Maeda, K. Hungerbuhler, A. Baiker, ACS Catal. 2, 464 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Nakai, T. Misaki, Y. Okamoto, T. Sugimura, Bull. Chem. Soc. Jpn. 88, 300 (2015)CrossRefGoogle Scholar
  21. 21.
    J.R.G. Perez, J. Malthete, J. Jacques, C. R. Acad. Sci. Paris 300, 169 (1985)Google Scholar
  22. 22.
    Y. Nitta, Y. Ueda, T. Imanaka, Chem. Lett. 23, 1095 (1994)CrossRefGoogle Scholar
  23. 23.
    Y. Nitta, T. Kubota, Y. Okamoto, Bull. Chem. Soc. Jpn. 73, 2635 (2000)CrossRefGoogle Scholar
  24. 24.
    Y. Nitta, K. Kobiro, Y. Okamoto, Stud. Surf. Sci. Catal. 108, 191 (1997)Google Scholar
  25. 25.
    Y. Nitta, K. Kobiro, Chem. Lett. 25, 897 (1996)Google Scholar
  26. 26.
    T. Kubota, H. Kubota, T. Kubota, E. Moriyasu, T. Uchida, Y. Nitta, T. Sugimura, Y. Okamoto, Catal. Lett. 129, 387 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Nitta, Y. Okamoto, Chem. Lett. 27, 1115 (1998)Google Scholar
  28. 28.
    Y. Nitta, J. Watanabe, T. Okuyama, T. Sugimura, J. Catal. 236, 164 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Sugimura, T. Uchida, J. Watanabe, T. Kubota, Y. Okamoto, T. Misaki, T. Okuyama, J. Catal. 262, 57 (2009)CrossRefGoogle Scholar
  30. 30.
    T. Misaki, H. Otsuka, T. Uchida, T. Kubota, Y. Okamoto, T. Sugimura, J. Mol. Catal. A 312, 48 (2009)CrossRefGoogle Scholar
  31. 31.
    T.Y. Kim, M. Yokota, T. Uchida, T. Sugimura, Catal. Lett. 131, 279 (2009)CrossRefGoogle Scholar
  32. 32.
    T.Y. Kim, T. Uchida, H. Ogawa, Y. Nitta, T. Okuyama, T. Sugimura, S. Hirayama, T. Honma, M. Sugiura, T. Kubota, Y. Okamoto, Top. Catal. 53, 116 (2010)CrossRefGoogle Scholar
  33. 33.
    T. Kubota, H. Ogawa, Y. Okamoto, T. Misaki, T. Sugimura, Appl. Catal. A 437/438, 18 (2012)CrossRefGoogle Scholar
  34. 34.
    T. Mameda, K. Nakai, T. Misaki, Y. Okamoto, T. Sugimura, Catal. Today 245, 129 (2015)CrossRefGoogle Scholar
  35. 35.
    H. Ogawa, T. Mameda, T. Misaki, Y. Okamoto, T. Sugimura, Chem. Lett. 42, 813 (2013)CrossRefGoogle Scholar
  36. 36.
    G. Szöllösi, B. Herman, K. Felfoldi, F. Fulop, M. Bartok, Adv. Synth. Catal. 359, 2804 (2008)CrossRefGoogle Scholar
  37. 37.
    G. Szöllösi, B. Herman, K. Felfoldi, F. Fulop, M. Bartok, J. Mol. Catal. A 290, 54 (2008)CrossRefGoogle Scholar
  38. 38.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.E. Moulder, G.E. Mullenberg, Handbook of X-Ray Photoelectron Spectroscopy (PerkinElmer Corp., Minnesota, 1979)Google Scholar
  39. 39.
    J. W. Niemantsverdriet, Spectroscopy in Catalysis, Chap. 3, VCH, Weinheim, p. 52 (1995)Google Scholar
  40. 40.
    F.P.J.M. Kerkhof, J.A. Moulijn, J. Phys. Chem. 83, 1612 (1979)CrossRefGoogle Scholar
  41. 41.
    Y. Nitta, T. Kubota, Y. Okamoto, Bull. Chem. Soc. Jpn 74, 2161 (2001)CrossRefGoogle Scholar
  42. 42.
    T.S.B. Trung, Y. Kim, S. Kang, H. Lee, S. Kim, Catal. Commun. 66, 21 (2015)CrossRefGoogle Scholar
  43. 43.
    K. Szori, R. Puskas, G. Szöllösi, L. Bertoti, J. Szepvolgyi, M. Bartok, Catal. Lett. 14, 539 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Haruka Sato
    • 1
  • Takuya Mameda
    • 1
  • Kengo Nakai
    • 1
  • Tomonori Misaki
    • 1
  • Yuichi Haruyama
    • 2
  • Seiji Sonobe
    • 3
  • Takeshi Kubota
    • 4
  • Yasuaki Okamoto
    • 1
  • Takashi Sugimura
    • 1
  1. 1.Graduate School of Material ScienceUniversity of HyogoAko-GunJapan
  2. 2.Laboratory of Advanced Science and Technology for IndustryUniversity of HyogoAko-GunJapan
  3. 3.Graduate School of Life ScienceUniversity of HyogoAko-GunJapan
  4. 4.Interdisciplinary Graduate School of Science and EngineeringShimane UniversityMatsueJapan

Personalised recommendations