Research on Chemical Intermediates

, Volume 42, Issue 1, pp 95–108 | Cite as

Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd-supported HNb3O8 metal oxide nanosheet catalyst

  • Nahaeng Lee
  • Young-Min Chung


A two-dimensional layered niobium oxide and its exfoliated nanosheet were examined as potential solid acid supports for direct synthesis of hydrogen peroxide from hydrogen and oxygen under intrinsically safe and noncorrosive reaction conditions. The catalytic performance strongly depended on the acid strength of the support material. The Pd-supported protonated niobium oxide nanosheet catalyst (Pd/HNb3O8-NS) with remarkably enhanced acidity was superior to layered Pd/KNb3O8 or Pd/HNb3O8 to promote the reaction. Hydrogen peroxide decomposition testing revealed that, although HNb3O8 was comparable to its exfoliated counterpart, HNb3O8-NS, in suppressing hydrogen peroxide decomposition without hydrogen, HNb3O8 was virtually ineffective in preventing hydrogen peroxide hydrogenation in the presence of hydrogen. However, compared with HNb3O8, HNb3O8-NS was found to be still effective at suppressing hydrogen peroxide hydrogenation. The different efficiency observed between HNb3O8 and HNb3O8-NS in the prevention of hydrogen peroxide hydrogenation implies that use of a highly acidic support is advantageous to effectively suppress faster and therefore more unfavorable hydrogen peroxide hydrogenation compared with decomposition. This result clearly demonstrates that the highly acidic HNb3O8 nanosheet can serve as an efficient solid acid support for direct synthesis of hydrogen peroxide from hydrogen and oxygen.


Direct synthesis Hydrogen peroxide Nanosheet Acid support Catalyst 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2013R1A1A4A01006480).


  1. 1.
    J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem. Int. Ed. 45, 6962 (2006)CrossRefGoogle Scholar
  2. 2.
    H. Henkel, W. Weber, US Patent 1,108,752 (1913)Google Scholar
  3. 3.
    C. Samanta, Appl. Catal. A: Gen. 350, 133 (2008)CrossRefGoogle Scholar
  4. 4.
    J.K. Edwards, G.J. Hutchings, Angew. Chem. Int. Ed. 47, 9192 (2008)CrossRefGoogle Scholar
  5. 5.
    J.K. Edwards, B. Solsona, E.N. Ntainjua, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, Science 323, 1037 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Park, J. Lee, J.H. Song, T.J. Kim, Y.-M. Chung, S.-H. Oh, I.K. Song, J. Mol. Catal. A: Chem. 363–364, 230 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Park, S.-H. Baeck, T.J. Kim, Y.-M. Chung, S.-H. Oh, I.K. Song, J. Mol. Catal. A: Chem. 319, 98 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Park, S.H. Lee, S.H. Song, D.R. Park, S.-H. Baeck, T.J. Kim, Y.-M. Chung, S.-H. Oh, I.K. Song, Catal. Commun. 10, 391 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Sun, J. Zhang, Q. Zhang, Y. Wang, H. Wan, Chem. Commun. 5174 (2009)Google Scholar
  10. 10.
    E.N. Ntainjua, M. Piccinini, S.J. Freakley, J.C. Pritchard, J.K. Edwards, A.F. Carley, G.J. Hutchings, Green Chem. 14, 170 (2012)CrossRefGoogle Scholar
  11. 11.
    G. Blanco-Brieva, E. Cano-Serrano, J.M. Campos-Martin, J.L.G. Fierro, Chem. Commun. 1184 (2004)Google Scholar
  12. 12.
    Y.-M. Chung, Y.-T. Kwon, T.J. Kim, S.-H. Oh, C.-S. Lee, Chem. Commun. 47, 5705 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Kim, Y.-M. Chung, S.-M. Kang, C.-H. Choi, B.-Y. Kim, Y.-T. Kwon, T.J. Kim, S.-H. Oh, C.-S. Lee, ACS Catal. 2, 1042 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.-M. Chung, Y.-R. Lee, W.-S. Ahn, Bull. Korean Chem. Soc. 36, 1378 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Ma, T. Sasaki, Adv. Mater. 2, 5082 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, Energy Environ. Sci. 3, 82 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Kitano, E. Wada, K. Nakajima, S. Hayashi, S. Miyazaki, H. Kobayashi, M. Hara, Chem. Mater. 25, 385 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Takagaki, M. Sugisawa, D. Lu, J.N. Kondo, M. Hara, K. Domen, S. Hayashi, J. Am. Chem. Soc. 125, 5479 (2003)CrossRefGoogle Scholar
  19. 19.
    C. Tagusagawa, A. Takagaki, S. Hayashi, M. Hara, K. Domen, J. Phys. Chem. C 113, 7831 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Takagaki, D. Lu, J.N. Kondo, M. Hara, S. Hayashi, K. Domen, Chem. Mater. 17, 2487 (2005)CrossRefGoogle Scholar
  21. 21.
    Z.J. Yang, L.F. Li, Q.B. Wu, N. Ren, Y.H. Zhang, Z.P. Liu, Y. Tang, J. Catal. 280, 247 (2011)CrossRefGoogle Scholar
  22. 22.
    W. Fan, Q. Zhang, W. Deng, Y. Wang, Chem. Mater. 25, 3277 (2013)CrossRefGoogle Scholar
  23. 23.
    X. Li, H. Pana, W. Li, Z. Zhuang, Appl. Cat. A: Gen. 412–414, 103 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Zhang, J. Gong, X. Zou, F. He, H. Zhang, Q. Zhang, Y. Liu, X. Yang, B. Hu, Chem. Eng. J. 123, 59 (2006)CrossRefGoogle Scholar
  25. 25.
    Z.Y. Zhan, C.Y. Xu, L. Zhen, W.S. Wang, W.Z. Shao, Ceram. Int. 36, 679 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Nedjar, M.M. Borel, B. Raveau, J. Mater. Res. Bull. 20, 1291 (1985)CrossRefGoogle Scholar
  27. 27.
    I. Huerta, J. García-Serna, M.J. Cocero, J. Supercritical Fluids 74, 80 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Nano and Chemical EngineeringKunsan National UniversityKunsanRepublic of Korea

Personalised recommendations