Research on Chemical Intermediates

, Volume 42, Issue 1, pp 367–377 | Cite as

Synthesis of Pb x Cr1−x MoO4 oxides using microwave process and their photocatalytic activity under visible light irradiation



Lead molybdate (PbMoO4) and chromium-substituted lead molybdate (PbCr1−x Mo x O4) were successfully synthesized using a microwave-assisted method and characterized by XRD, Raman spectroscopy, SEM, PL, and DRS. We also investigated the photocatalytic activity of these materials for the decomposition of rhodamine B under UV and visible light irradiation. The XRD and Raman results revealed the successful synthesis of 51–59 nm, well-crystallized PbMoO4 crystals with the microwave-assisted hydrothermal method. The DRS spectra of PbMo1−x Cr x O4 catalysts showed new intensive absorption bands in the visible light region. The PbMoO4 catalysts showed the lowest photocatalytic activity and the activity was increased with an increase of chromium substitution content under visible light irradiation. The PL peaks appeared at about 540–580 nm for all catalysts and the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of rhodamine B.


Chromium-substituted lead molybdate (PbCr1−xMoxO4Microwave-assisted hydrothermal process Photocatalytic decomposition of rhodamine B 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0006722).


  1. 1.
    Ch.J. Mao, J. Geng, X.C. Wu, J.J. Zhu, J. Phys. Chem. C 114, 1982 (2010)CrossRefGoogle Scholar
  2. 2.
    N. Clavier, R. Podor, N. Dacheux, J. Eur. Ceram. Soc. 31, 941 (2011)CrossRefGoogle Scholar
  3. 3.
    E.R.S. Daniel, X.H. Kumar, C.Y. Ma, J. Tu, J. Solid State Chem. 181, 355 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Matsumura, M. Hiramoto, H. Tsubomura, J. Electrochem. Soc. 130, 326 (1983)CrossRefGoogle Scholar
  5. 5.
    J.M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 108, 618 (1984)CrossRefGoogle Scholar
  6. 6.
    N. Serpone, D. Lawless, Langmuir 10, 643 (1994)CrossRefGoogle Scholar
  7. 7.
    H. Kato, A. Kudo, J. Phys. Chem. B 106, 5029 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Kudo, M. Sekizawa, Catal. Lett. 58, 241 (1999)CrossRefGoogle Scholar
  9. 9.
    J.H. Bi, L. Wu, Y.F. Zhang, Z.H. Li, J.Q. Li, Z.X. Fu, Appl. Catal. B 91, 135 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Ding, X. Lu, H. Shu, J. Xie, H. Zhang, Mater. Sci. Eng. B 171, 31 (2010)CrossRefGoogle Scholar
  11. 11.
    W.Y. Jung, S.S. Hong, J. Ind. Eng. Chem. 19, 157 (2013)CrossRefGoogle Scholar
  12. 12.
    W.Y. Jung, K.T. Lim, J.H. Kim, M.S. Lee, S.S. Hong, J. Nanosci. Nanotechnol. 13, 6160 (2013)CrossRefGoogle Scholar
  13. 13.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)Google Scholar
  14. 14.
    Y.I. Song, K.T. Lim, G.D. Lee, M.S. Lee, S.S. Hong, J. Nanosci. Nanotechnol. 14, 8502 (2014)CrossRefGoogle Scholar
  15. 15.
    J.C. Sczancoski, M.D.R. Bomio, L.S. Cavalcante, M.R. Joya, P.S. Pizani, J.A. Varela, E. Longo, M.S. Li, A. Andrés. J. Phys. Chem. C 113, 5812 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Phuruangrat, T. Thongtemb, S. Thongtem, J. Cryst. Growth 311, 4076 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Bull. Chem. Soc. Jpn. 80, 855 (2007)CrossRefGoogle Scholar
  18. 18.
    F. Li, Y. Liu, R. Liu, Z. Sun, D. Zhao, C. Kou, Mater. Lett. 64, 223 (2010)CrossRefGoogle Scholar
  19. 19.
    J.C. Sczancoski, L.S. Cavalcante, N.L. Marana, R.O. daSilva, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, J.R. Sambrano, M.S. Li, E. Longo, J. Andrés, Curr. Appl. Phys. 10, 614 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringPukyong National UniversityBusanKorea

Personalised recommendations