Research on Chemical Intermediates

, Volume 42, Issue 5, pp 4077–4095 | Cite as

Facile one-pot synthesis of nano-zinc hydroxide by electro-dissolution of zinc as a sacrificial anode and the application for adsorption of Th4+, U4+, and Ce4+ from aqueous solution

  • Ramakrishnan Kamaraj
  • Subramanyan Vasudevan


Facilely synthesized zinc hydroxide nanoparticles by electro-dissolution of zinc sacrificial anodes were investigated for the adsorption of thorium (Th4+), uranium (U4+) and cerium (Ce4+) from aqueous solution. Various operating parameters such as effect of pH, current density, temperature, electrode configuration, and electrode spacing on the adsorption efficiency of Th4+, U4+ and Ce4+ were studied. The results showed that the maximum removal efficiency was achieved for Th4+, U4+ and Ce4+ with zinc as anode and stainless steel as cathode at a current density of 0.2 A/dm2 and pH of 7.0. First- and second-order rate equations were applied to study the adsorption kinetics. The adsorption process follows second order kinetics model with good correlation. The Langmuir, Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The experimental adsorption data were fitted to the Langmuir adsorption model. Thermodynamic parameters such as free energy (Δ), enthalpy (Δ), and entropy changes (ΔS°) for the adsorption of Th4+, U4+ and Ce4+ were computed to predict the nature of adsorption process. Temperature studies showed that the adsorption was endothermic and spontaneous in nature.


Metal hydroxide Adsorption Radioactive Kinetics Isotherm Thermodynamics 



The authors wish to express their gratitude to Dr. Vijayamohanan K. Pillai, Director, CSIR-Central Electrochemical Research Institute, Karaikudi to publish this article.


  1. 1.
    D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Desalination 321, 77 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Saleem, M. Afzal, R. Qadeer, J. Hanif, J. Radloanal, Nuclear Chem. 172, 257 (1993)CrossRefGoogle Scholar
  3. 3.
    S. Shankar Dubey, B. Sreenivasa Rao, J. Hazard Mater. 186, 1028 (2011)CrossRefGoogle Scholar
  4. 4.
    Z. Xiaofei Zhang, W. Jun, L. Rumin, D. Qihui, L. Lianhe, N. J. Chem. 37, 3914 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Kalina, W.N. Wheelerb, G. Meinrath, J. Environ. Radioact. 78, 151 (2005)CrossRefGoogle Scholar
  6. 6.
    M.A. Mohsen, F.H. Mohammed, J. Dispers. Sci. Technol. 34, 182 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Fatima, N. Djamel, A. Samira, B. Mahfoud, Desalin. Water Treat. 51, 583 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Kilincarslan Kaygun, S. Akyil, J. Hazard Mater. 147, 357 (2007)CrossRefGoogle Scholar
  9. 9.
    N. Pan, J. Deng, D. Guan, Y. Jin, C. Xia, Appl. Surf. Sci. 287, 478 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Xu, C. Chen, X. Tan, J. Hu, X. Wang, Appl. Geochem. 22, 2892 (2007)CrossRefGoogle Scholar
  11. 11.
    C.L. Chen, X.K. Wang, Appl. Geochem. 22, 436 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Li, Y. Zhang, Proced. Environ. Sci. 13, 1609 (2012)CrossRefGoogle Scholar
  13. 13.
    L.W. Yu, S. Li-Juan, Z. Lu, G. Bo-Long, C. Su-Wen, W. Wang-Suo, Dalton Trans. 43, 3739 (2014)CrossRefGoogle Scholar
  14. 14.
    E. Onder, A.S. Koparal, U.B. Ogutveren, Sep. Purif. Technol. 52, 527 (2007)CrossRefGoogle Scholar
  15. 15.
    D.W. Miwa, G.R.P. Malpass, S.A.S. Machado, A.J. Motheo, Water Res. 40, 3281 (2006)CrossRefGoogle Scholar
  16. 16.
    E.A. Vik, D.A. Carlson, A.S. Eikum, E.T. Gjessing, Water Res. 18, 1355 (1984)CrossRefGoogle Scholar
  17. 17.
    S. Vasudevan, J. Lakshmi, J. Jayaraj, G. Sozhan, J. Hazard Mater. 164, 1480 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Vasudevan, S. Margrat Sheela, J. Lakshmi, G. Sozhan, J. Chem. Technol. Biotech. 85, 926 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Vanmuylder, M. Pourbaix, in Atlas of Electrochemical Equilibria in Aquous Solutions: Zinc, ed. by J. Vanmuylder, M. Pourbaix (Pergamon, New York, 1966)Google Scholar
  20. 20.
    P.K. Singh, B. Sushmita, A.L. Srivastava, Y.C. Sharma, RSC Adv. 5, 35365 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.S. Ho, G. McKay, Adsorpt. Sci. Technol. 16, 243 (1998)Google Scholar
  22. 22.
    H.M.F. Freundlich, J. Phys. Chem. A 57, 385 (1906)Google Scholar
  23. 23.
    P. Sathishkumar, M. Arulkumar, V. Ashokkumar, A. Rahim Mohd Yusoff, K. Murugesan, T. Palvannan, Z. Salam, F. Nasir Anic, T. Hadibarata, RSC Adv. 5, 30950 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Alkan, B. Kalay, M. Dogan, J. Hazard Mater. 153, 867 (2008)CrossRefGoogle Scholar
  25. 25.
    A.K. Golder, A.N. Samantha, S. Ray, Sep. Purif. Technol. 52, 102 (2006)CrossRefGoogle Scholar
  26. 26.
    M.J. Hernandez-Moreno, M.A. Ulibarri, J.L. Renon, C.J. Serna, Phys. Chem. Miner. 12, 34 (1985)Google Scholar
  27. 27.
    K.Y. Foo, B.H. Hameed, Chem. Eng. J. 87, 53 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.CSIR-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations