Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 4, pp 3473–3488 | Cite as

Synthesis, crystal structure, spectroscopic properties and DFT calculations of a new Schiff base-type Zinc(II) complex

  • Lan-Qin Chai
  • Jian-Yu Zhang
  • Li-Chuan Chen
  • Yao-Xin Li
  • Li-Jian Tang
Article

Abstract

A new mononuclear Zn(II) complex, [Zn(L 2 )2]·CH3OH (HL 2  = 1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Zn(II) acetate dihydrate with HL 1 (HL 1  = 2-(3,5-dichloro-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL 1 and its corresponding Zn(II) complex were characterized by infrared (IR), ultraviolet-visible light (UV–Vis) and emission spectroscopy, as well as by elemental analysis. The crystal structure of the complex has been determined by single-crystal X-ray diffraction (XRD). Each complex links two other molecules into an infinite one-dimensional (1-D) chain through intermolecular hydrogen bonds. Moreover, the calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies show the character of the ligand HL 1 and the Zn(II) complex. Time-dependent density functional theory (TDDFT) calculations were done on the optimised geometries to understand the electronic structure and spectral transition in the ligand and the Zn(II) complex.

Graphical abstract

A new mononuclear Zn(II) complex involving a Schiff base-type instead of an anticipated quinazoline complex has been synthesized and characterized structurally by spectroscopic methods. The crystal structure of the complex has been determined by single-crystal XRD. Each complex links two other molecules into an infinite 1-D chain through intermolecular hydrogen bonds. Moreover, the calculated HOMO and LUMO energies show the character of the ligand HL 1 and the Zn(II) complex. The TDDFT calculations were done on the optimised geometries to understand the electronic structure and spectral transition in the ligand and the Zn(II) complex.

Keywords

Schiff base-type complex Quinazoline-type ligand Crystal structures Spectroscopic properties DFT calculations 

Notes

Acknowledgments

We are thankful for the financial support by the Fundamental Research Funds for the Universities of Gansu Province (No. 2140152).

References

  1. 1.
    H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, Science 341, 974–986 (2013)CrossRefGoogle Scholar
  2. 2.
    Z.H. Chohan, S.H. Sumrra, M.H. Youssoufi, T.B. Hadda, Eur. J. Med. Chem. 45, 2739–2747 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Wu, D.F. Wang, J. Shi, S. Xue, M.L. Gao, J. Agric. Food Chem. 58, 5757–5762 (2010)CrossRefGoogle Scholar
  4. 4.
    L.F. Ma, C.P. Li, L.Y. Wang, M. Du, Cryst. Growth Des. 11, 3309–3312 (2011)CrossRefGoogle Scholar
  5. 5.
    X.Y. Zhou, B.R. Yu, Y.L. Guo, X.L. Tang, H.H. Zhang, W.S. Liu, Inorg. Chem. 49, 4002–4007 (2010)CrossRefGoogle Scholar
  6. 6.
    A.I. Sachin, S. Frank, J. Org. Chem. 77, 9352–9356 (2012)CrossRefGoogle Scholar
  7. 7.
    M.V. Gastel, C.C. Lu, K. Wieghardt, W. Lubitz, Inorg. Chem. 48, 2626–2632 (2009)CrossRefGoogle Scholar
  8. 8.
    Z.J. Zhang, P. Cui, X.Y. Chen, Ind. Eng. Chem. Res. 52, 16211–16219 (2013)CrossRefGoogle Scholar
  9. 9.
    W.S. Xia, C.H. Huang, D.J. Zhou, Langmuir 13, 80–84 (1997)CrossRefGoogle Scholar
  10. 10.
    S.T. Zhang, T.R. Li, B.D. Wang, Z.Y. Yang, J. Liu, Z.Y. Wang, W.K. Dong, Dalton Trans. 43, 2713–2717 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Maret, Y. Li, Chem. Rev. 109, 4682–4707 (2009)CrossRefGoogle Scholar
  12. 12.
    I.M.A. Mundo, K.E. Siters, M.A. Fountain, J.R. Morrow, Inorg. Chem. 51, 5444–5457 (2012)CrossRefGoogle Scholar
  13. 13.
    H. Park, K.M. Merz Jr, J. Med. Chem. 48, 1630–1637 (2005)CrossRefGoogle Scholar
  14. 14.
    B.X. Wei, A.M. Randich, M.B. Pakrasi, H.B. Pakrasi, T.J. Smith, Biochemistry 46, 8734–8743 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Alonso, A. Caballero, P.J. Campos, D. Sampedro, M.A. Rodríguez, Tetrahedron 66, 4469–4473 (2010)CrossRefGoogle Scholar
  16. 16.
    E.M. Olasik, K.B. Światkiewiz, E. Żurek, U. Krajewska, M. Różalski, T.J. Bartczak, Arch. Pharm. Med. Chem. 337, 239–246 (2004)CrossRefGoogle Scholar
  17. 17.
    J.M. Xiao, W. Zhang, Inorg. Chem. Commun. 12, 1175–1178 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Kalanithi, M. Rajarajan, P. Tharmara, J. Coord. Chem. 64, 842–850 (2011)CrossRefGoogle Scholar
  19. 19.
    L.Q. Chai, G. Liu, Y.L. Zhang, J.J. Huang, J.F. Tong, J. Coord. Chem. 66, 3926–3938 (2013)CrossRefGoogle Scholar
  20. 20.
    L.Q. Chai, H.S. Zhang, J.J. Huang, Y.L. Zhang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 661–669 (2015)CrossRefGoogle Scholar
  21. 21.
    L.Q. Chai, J.J. Huang, J.Y. Zhang, Y.X. Li, J. Coord. Chem. 68, 1224–1237 (2015)CrossRefGoogle Scholar
  22. 22.
    L.Q. Chai, Y.L. Zhang, K. Cui, Z.R. Wang, L.W. Zhang, Y.Z. Zhang, Z. Kristallogr, New. Cryst. Struct. 227, 153–154 (2012)Google Scholar
  23. 23.
    G.W.T.M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, O.Y. Stratmann, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc., Gaussian 09, Revision A. 01 ed, (Wallingford, CT 2009). http://refhub.elsevier.com/S0925-4005(15)00769-8/sbref0210
  24. 24.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  25. 25.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  26. 26.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270–283 (1985)CrossRefGoogle Scholar
  27. 27.
    W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284–298 (1985)CrossRefGoogle Scholar
  28. 28.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299–310 (1985)CrossRefGoogle Scholar
  29. 29.
    R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454–464 (1996)CrossRefGoogle Scholar
  30. 30.
    R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 108, 8218–8224 (1998)CrossRefGoogle Scholar
  31. 31.
    M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439–4449 (1998)CrossRefGoogle Scholar
  32. 32.
    V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995–2001 (1998)CrossRefGoogle Scholar
  33. 33.
    M. Cossi, V. Barone, J. Chem. Phys. 115, 4708–4717 (2001)CrossRefGoogle Scholar
  34. 34.
    M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24, 669–681 (2003)CrossRefGoogle Scholar
  35. 35.
    T. Lu, F.W. Chen, J. Comp. Chem. 33, 580–592 (2012)CrossRefGoogle Scholar
  36. 36.
    T. Lu, F.W. Chen, J. Mol. Graph. Model. 38, 314–323 (2012)CrossRefGoogle Scholar
  37. 37.
    G.M. Sheldrick, Acta Crystallogr. A 64, 112–122 (2008)CrossRefGoogle Scholar
  38. 38.
    G.M. Sheldrick, SHELXS-97 and SHELXL-97, Program for the Refinement of Crystal Structures (University of Göttingen, Germany, 1997)Google Scholar
  39. 39.
    M.M. Carthy, P.J. Gyiry, Polyhedron 19, 541–543 (2000)CrossRefGoogle Scholar
  40. 40.
    K. Das, A. Jana, S. Konar, S. Chatterjee, T.K. Mondal, A.K. Barik, S.K. Kar, J. Mol. Struct. 1048, 98–107 (2013)CrossRefGoogle Scholar
  41. 41.
    D. Kovala-Demertzi, V.N. Dokorou, J.P. Jasinski, A. Opolski, J. Wiecek, M. Zervou, M.A. Demertzis, J. Org. Chem. 690, 1800–1806 (2005)CrossRefGoogle Scholar
  42. 42.
    D. Hauchecorne, N. Nagels, B.J. van der Veken, W.A. Herrebout, Phys. Chem. Chem. Phys. 14, 681–690 (2012)CrossRefGoogle Scholar
  43. 43.
    L.Q. Chai, J.J. Huang, H.S. Zhang, Y.L. Zhang, J.Y. Zhang, Y.X. Li, Spectrochim. Acta Part A: Mol. Biomol. Spect. 131, 526–533 (2014)CrossRefGoogle Scholar
  44. 44.
    T.Z. Yu, K. Zhang, Y.L. Zhao, C.H. Yang, H. Zhang, L. Qian, D.W. Fan, W.K. Dong, L.L. Chen, Y.Q. Qiu, Inorg. Chim. Acta 361, 233–240 (2008)CrossRefGoogle Scholar
  45. 45.
    C.J. Dhanaraj, J. Johnson, J. Joseph, R.S. Joseyphus, J. Coord. Chem. 66, 1416–1450 (2013)CrossRefGoogle Scholar
  46. 46.
    M.K. Paria, J. Dinda, T.H. Lu, A.R. Paital, C. Sinha, Polyhedron 26, 4131–4140 (2007)CrossRefGoogle Scholar
  47. 47.
    T. Ghosh, B. Mondal, T. Ghosh, M. Sutradhar, G. Mukherjee, M.G.B. Drew, Inorg. Chim. Acta 360, 1753–1761 (2007)CrossRefGoogle Scholar
  48. 48.
    W.K. Dong, S.J. Xing, Y.X. Sun, L. Zhao, L. Q. Chai, X. H. Gao. J. Coord. Chem. 65, 1212–1220 (2012)CrossRefGoogle Scholar
  49. 49.
    S. Mandala, S. Chatterjeeb, R. Modaka, Y. Sikdara, B. Naskara, S. Goswamia, J. Coord. Chem. 67, 699–713 (2014)CrossRefGoogle Scholar
  50. 50.
    Y.H. Zhou, D.L. Sun, J. Tao, L.Q. Chen, Y.F. Huang, Y.K. Lia, Y. Cheng, J. Coord. Chem. 67, 2393–2404 (2014)CrossRefGoogle Scholar
  51. 51.
    Y.H. Zhou, W.Q. Wan, D.L. Sun, J. Tao, L. Zhang, X.W. Wei, Z. Anorg, Allg. Chem. 640, 249–253 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lan-Qin Chai
    • 1
  • Jian-Yu Zhang
    • 1
  • Li-Chuan Chen
    • 2
  • Yao-Xin Li
    • 1
  • Li-Jian Tang
    • 1
  1. 1.School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhouChina
  2. 2.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations