Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 4, pp 2989–3004 | Cite as

Sonochemical syntheses of xanthene derivatives using zeolite-supported transition metal catalysts in aqueous media

  • Kazem D. Safa
  • Elham Taheri
  • Maryam Allahvirdinesbat
  • Aligholi Niaei
Article

Abstract

An efficient green method for the syntheses of biologically active xanthene derivatives by use of zeolite-supported transition metal catalysts is described. A Fe-Cu/ZSM-5 heterogeneous catalyst has the highest activity in the one-pot syntheses with a wide range of aldehydes and cyclic 1,3-diketones, under ultrasonic irradiation in water at ambient temperatures. The three-component condensation in the presence of supported metal catalysts is operationally simple, requires no expensive or toxic reagents, and gives high yields in short reaction times.

Keywords

Xanthenes Fe-Cu/ZSM-5 Ultrasonic irradiation MCRs Supported catalyst Water 

Notes

Acknowledgments

We thank Dr. J.D. Smith for his helpful comments. The authors also would like to acknowledge the financial support from University of Tabriz and Iranian Nanotechnology Initiative.

Supplementary material

11164_2015_2192_MOESM1_ESM.docx (7 mb)
Supplementary material 1 (DOCX 7153 kb)

References

  1. 1.
    B.S.P. Anil Kumar, K. Harsha Vardhan Reddy, B. Madhav, K. Ramesh, Y.V.D. Nageswar, Tetrahedron Lett. 53, 4595 (2012)CrossRefGoogle Scholar
  2. 2.
    K. Sivakumar, A. Kathirvel, A. Lalitha, Tetrahedron Lett. 51, 3018 (2010)CrossRefGoogle Scholar
  3. 3.
    S.R. Mistry, K.C. Maheria, J. Mol. Catal. A 355, 210 (2012)CrossRefGoogle Scholar
  4. 4.
    M.J. Climent, A. Corma, S. Iborra, RSC Adv. 2, 16 (2012)CrossRefGoogle Scholar
  5. 5.
    D.I. MaGee, M. Dabiri, P. Salehi, L. Torkianb, ARKIVOC xi, 156 (2011)Google Scholar
  6. 6.
    S.S. Panda, S.C. Jain, Mini. Rev. Org. Chem. 8, 455 (2011)CrossRefGoogle Scholar
  7. 7.
    S.S. Panda, Mini. Rev. Med. Chem. 13, 784 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Ko, C.F. Yao, Tedraherdon Lett. 47, 8827 (2006)CrossRefGoogle Scholar
  9. 9.
    N. Ghaffari Khaligh, Ultrason. Sonochem. 19, 736 (2012)CrossRefGoogle Scholar
  10. 10.
    G.I. Shakibaei, P. Mirzaei, A. Bazgir, Appl. Catal. A 325, 188 (2007)CrossRefGoogle Scholar
  11. 11.
    J.V. Madhav, Y.T. Reddy, P.N. Reddy, M.N. Reddy, S. Kuarm, P.A. Crooks, B. Rajitha, J. Mol. Catal. A. 304, 85 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Shaabani, M. Mahyari, F. Hajishaabanha, Res. Chem. Intermed. (2013). doi: 10.1007/s11164-014-1537-59 Google Scholar
  13. 13.
    S.K. Mohamed, A.A. Abdelhamid, A.M. Maharramov, A.N. Khalilov, A.V. Gurbanov, M.A. Allahverdiyev, J. Chem. Pharm. Res. 4, 955 (2012)Google Scholar
  14. 14.
    D. Azarifar, D. Sheikh, Helv. Chim. Acta 95, 1217 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Safari, L. Javadian, Ultrason. Sonochem. 22, 341 (2014)CrossRefGoogle Scholar
  16. 16.
    G.-F. Chen, H.-Y. Li, N. Xiao, B.-H. Chen, Y.-L. Song, J.-T. Li, Z.-W. Li, Aust. J. Chem. (2014). doi: 10.1071/CH13700 Google Scholar
  17. 17.
    K.D. Safa, M. Allahvirdinesbat, H. Namazi, Mol. Divers. 19, 29 (2015)CrossRefGoogle Scholar
  18. 18.
    K.D. Safa, M. Abolfathi, K. Ghorbanpour, J. Chem. Res. 36, 575 (2012)CrossRefGoogle Scholar
  19. 19.
    K.D. Safa, L. Sarchami, M. Allahvirdinesbat, A. Feyzi, P. Nakhostin Panahi, J. Chem. Res. 38, 571 (2014)CrossRefGoogle Scholar
  20. 20.
    K.D. Safa, A. Zeinolabedini, H. Abbasi, R. Teimuri-Mofrad, J. Iran. Chem. Soc. 10, 447 (2013)CrossRefGoogle Scholar
  21. 21.
    K.D. Safa, T. Shokri, H. Abbasi, R. Teimuri-Mofrad, J. Heterocyclic Chem. (2013). doi: 10.1002/jhet.1858 Google Scholar
  22. 22.
    F. Caturla, M. Amat, R.F. Reinoso, M. Cordoba, G. Warrellow, Bioorg. Med. Chem. Lett. 16, 3209 (2006)CrossRefGoogle Scholar
  23. 23.
    P.W. Groundwater, K.R.H. Solomons, J. Chem. Soc. Perkin Trans. 1, 173 (1994)CrossRefGoogle Scholar
  24. 24.
    T. Kamino, K. Kuramochi, S. Kobayashi, Tetrahedron Lett. 44, 7349 (2003)CrossRefGoogle Scholar
  25. 25.
    D.T. Puerta, J. Mongan, B.L. Tran, J.A. McCammon, S.M. Cohen, J. Am. Chem. Soc. 127, 14148 (2005)CrossRefGoogle Scholar
  26. 26.
    A. Shahrisa, K.D. Safa, S. Esmati, Spectrochim. Acta A 117, 614 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Fan, X. Zhang, J. Wang, Can. J. Chem. 83, 16 (2005)CrossRefGoogle Scholar
  28. 28.
    F. Shirini, A. Yahyazadeh, K. Mohammadi, Chin. Chem. Lett. 25, 341 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Nakhostin Panahi, A. Niaei, H.-H. Tseng, D. Salari, S.M. Mousavi, Neural Comput. Appl. (2014). doi: 10.1007/s00521-014-1781-z Google Scholar
  30. 30.
    Z.H. Zhang, P. Zhang, S.H. Yang, H.J. Wang, J. Deng, J. Chem. Sci. 122, 427 (2010)CrossRefGoogle Scholar
  31. 31.
    G.C. Nandi, S. Samai, R. Kumar, M. Singh, Tetrahedron 65, 7129 (2009)CrossRefGoogle Scholar
  32. 32.
    J.M. Khurana, D. Magoo, Tetrahedron Lett. 50, 4777 (2009)CrossRefGoogle Scholar
  33. 33.
    A.N. Dadhania, V.K. Patel, D.K. Raval, C. R. Chimie 15, 378 (2012)CrossRefGoogle Scholar
  34. 34.
    K. Singh, J. Singh, H. Singh, Tetrahedron 52, 14273 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kazem D. Safa
    • 1
  • Elham Taheri
    • 1
  • Maryam Allahvirdinesbat
    • 1
  • Aligholi Niaei
    • 2
  1. 1.Organosilicon Research Laboratory, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.Department of Applied Chemistry and Chemical Engineering, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations