Research on Chemical Intermediates

, Volume 42, Issue 3, pp 2461–2471 | Cite as

Photocatalytic decolorization of reactive red 198 dye by a TiO2–activated carbon nano-composite derived from the sol–gel method

  • Ameneh Eshaghi
  • Sam Hayeripour
  • Akbar Eshaghi


In this research, a TiO2–activated carbon nano-composite was prepared by a sol–gel method and characterized by XRD, FE-SEM, EDS, FTIR, BET surface area, photoluminescence spectroscopy and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of the nano-composite was evaluated through degradation of reactive red 198 (RR 198) under UV light, and was compared to unsupported TiO2. The XRD result indicated that the TiO2 nano-composite contained only anatase phase. The surface area of the TiO2 increased from 48 to 100 m2/g through the fabrication of the nano-composite. The photocatalytic results indicated that the RR 198 was decolorized around 42 and 38 % during a 210-min irradiation period in the presence of nano-composite and TiO2, respectively. It means that nano-composite enhanced the photocatalytic activity of the TiO2 nano-particles. After 20 h of irradiation in the presence of the nano-composite, 97 % of RR 198 had degraded.


TiO2 Nano-composite Photocatalytic Reactive red 198 


  1. 1.
    K. Kaur, V. Singh, J. Hazard. Mater. 141, 230 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Nasw, K. Vinodgopal, S. Hotchandanf, A. Kvinodgopal, A.K. Chattopadhyay, P.V. Kamat, Res. Chem. Intermed. 23, 219 (1997). KAMAT CrossRefGoogle Scholar
  3. 3.
    Y. Zhiyong, D. Bahnemann, R. Dillert, S. Lin, L. Liqin, J. Mol. Catal. A Chem. 365, 1 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Sun, X. Yan, K. Lv, S. Sun, K. Deng, D. Du, J. Mol. Catal. A Chem. 367, 31 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Saffar-Teluri, S. Bolouk, M.H. Amini, Res. Chem. Intermed. 39, 3345 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Zhang, F. Zeng, Res. Chem. Intermed. 36, 1055 (2010)CrossRefGoogle Scholar
  7. 7.
    U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Eshaghi, M. Pakshir, R. Mozaffarinia, Bull. Mater. Sci. 33, 365 (2010)CrossRefGoogle Scholar
  9. 9.
    N. Mohammad Mahmoodi, M. Arami, J. Zhang, J. Alloys Compd. 509, 4754 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Asilturk, S. Sener, Chem. Eng. J. 180, 354 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Hakamizadeh, S. Afshar, A. Tadjarodi, R. Khajavian, M.R. Fadaie, B. Bozorgi, Int. J. Hydrogen Energy 39, 7262 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Gao, P.S. Yap, T.M. Lim, T.T. Lim, Chem. Eng. J. 171, 1098 (2011)CrossRefGoogle Scholar
  13. 13.
    A.K. Subramani, K. Byrappa, G.N. Kumaraswamy, H.B. Ravikumar, C. Ranganathaiah, K.M. Lokanatha Rai, S. Ananda, M. Yoshimura, Mater. Lett. 61, 4828 (2007)CrossRefGoogle Scholar
  14. 14.
    M.Q. Yang, N. Zhang, M. Pagliaro, Y.J. Xu, Chem. Soc. Rev. 43, 8240 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, ACS Nano 4(12), 7303 (2010)CrossRefGoogle Scholar
  16. 16.
    N. Zhang, Y. Zhang, Y.J. Xu, Nanoscale 4, 5792 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Han, M.Q. Yang, B. Weng, Y.J. Xu, Phys. Chem. Chem. Phys. 16, 16891 (2014)CrossRefGoogle Scholar
  18. 18.
    A.E. Eliyas, L. Ljutzkanov, I.D. Stambolova, V.N. Blaskov, S.V. Vassilev, E.N. Razkazova-Velkova, D.R. Mehandjiev, Cent. Eur. J. Chem. 11, 464 (2013)Google Scholar
  19. 19.
    S.X. Liu, X.Y. Chen, X. Chen, J. Hazard. Mater. 143, 257 (2007)CrossRefGoogle Scholar
  20. 20.
    N. Mohammad Mahmoodi, M. Arami, N. Yousefi Limaee, J. Hazard. Mater. 133, 113 (2006)CrossRefGoogle Scholar
  21. 21.
    L. Ravichandran, K. Selvam, M. Swaminathan, J. Mol. Catal A Chem. 317, 89 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, G. Zhao, J. Hazard. Mater. 169, 1061 (2009)CrossRefGoogle Scholar
  23. 23.
    C.H. Kim, B.H. Kim, K.S. Yang, TiO2 nanoparticles loaded on grapheme/carbon composite nanofibers by electrospining for increased photocatalysis. Carbon 50, 2472–2481 (2012)CrossRefGoogle Scholar
  24. 24.
    M.H. Baek, J.W. Yoon, J.S. Hong, J.K. Suh, Appl. Catal. A Gen. 450, 222 (2013)CrossRefGoogle Scholar
  25. 25.
    M.A. Rauf, S. Salman Ashraf, Chem. Eng. J. 151, 10 (2009)CrossRefGoogle Scholar
  26. 26.
    I. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Yao, J. Li, Z. Shi, Particuology 8, 272 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Eshaghi, R. Mozaffarinia, M. Pakshir, A. Eshaghi, Ceram. Int. 37, 327 (2011)CrossRefGoogle Scholar
  29. 29.
    K. Naeem, F. Ouyang, J. Environ. Sci. 25, 399 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Chen, C.S. Poon, Build. Environ. 44, 1899 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Faculty of Environmental Science, Tonekabon BranchIslamic Azad UniversityTonekabonIran
  2. 2.Faculty of Materials Science and EngineeringMaleke Ashtar University of TechnologyIsfahan, ShahinshahrIran

Personalised recommendations