Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 3, pp 1899–1911 | Cite as

Synthesis and characterization of pyridine-4-carboxylic acid functionalized Fe3O4 nanoparticles as a magnetic catalyst for synthesis of pyrano[3,2-b]pyranone derivatives under solvent-free conditions

  • Sakineh Asghari
  • Majid Mohammadnia
Article

Abstract

Pyridine-4-carboxylic acid (PYCA) functionalized Fe3O4 nanoparticles as an organic–inorganic hybrid heterogeneous catalyst was fabricated and characterized by FT-IR, XRD, TGA, TEM, SEM, and VSM techniques. The catalytic activity of the magnetic catalyst was probed through one-pot synthesis of pyrano[3,2-b]pyranone derivatives from three component reactions of aromatic aldehydes, kojic acid, and ethyl cyanoacetate under solvent-free conditions. Some advantages of this protocol are its environmentally benign method, simple procedure, high yields, and short reaction time. The catalyst was readily separated using an external magnet and reusable without significant loss of its catalytic efficiency.

Keywords

Magnetic properties Pyrano[3,2-b]pyranone Arylaldehydes Kojic acid Ethyl cyanoacetate Nanoparticles 

Notes

Acknowledgments

This research was supported by the Research Council of the University of Mazandaran in Iran.

Supplementary material

11164_2015_2124_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2350 kb)

References

  1. 1.
    A. Tiwari, A.K. Mishra, H. Kobayashi, A.P.F. Turner, Intelligent Nanomaterials: Processes, Properties, and Applications (John Wiley & Sons, Inc., New Jersey, 2012)CrossRefGoogle Scholar
  2. 2.
    B. Hu, J. Pan, H.L. Yu, J.W. Liu, J.H. Xu, Process Biochem. 44, 1019–1024 (2009)CrossRefGoogle Scholar
  3. 3.
    K.J. Klabunde, R. Mulukutla, Chemical and Catalytic Aspects of Nanocrystals. Nanoscale Materials in Chemistry (Wiley Interscience, NewYork, 2001)CrossRefGoogle Scholar
  4. 4.
    C.N.R. Rao, A. Müller, K. Anthony, Nanomaterials Chemistry: Recent Developments and New Directions (John Wiley & Sons, Inc., New Jersey, 2007)CrossRefGoogle Scholar
  5. 5.
    A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, 1222–1244 (2007)CrossRefGoogle Scholar
  6. 6.
    C.S. Gill, B.A. Price, C.W. Jones, J. Catal. 251, 145–152 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Taher, J.B. Kim, J.Y. Jung, W.S. Ahn, M.J. Jin, Synlett 15, 2477–2482 (2009)Google Scholar
  8. 8.
    O.C. Dalaigh, A.S. Corr, Y. Gunko, J.S. Connon, Angew. Chem. Int. Ed. 46, 4329–4332 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, Y. Zhao, C. Xia, J. Mol. Catal. A: Chem. 306, 107–112 (2009)CrossRefGoogle Scholar
  10. 10.
    D. Wang, D. Astruc, Chem. Rev. 114, 6949–6985 (2014)CrossRefGoogle Scholar
  11. 11.
    Q.M. Kainz, O. Reiser, Acc. Chem. Res. 47, 667–677 (2014)CrossRefGoogle Scholar
  12. 12.
    R.B. Nasir Baig, M.N. Nadagouda, R.S. Varma, Coord. Chem. Rev. 287, 137–156 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Zhu, H. Bienayme, Multicomponent Reactions (Wiley-VCH, Weinheim, 2005)CrossRefGoogle Scholar
  14. 14.
    A. Dömling, Chem. Rev. 106, 17–89 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Jimenez-Alonso, H. Chavez, A. Estevez-Braan, A. Ravelo, G. Feresin, A. Tapia, Tetrahedron 64, 8938–8942 (2008)CrossRefGoogle Scholar
  16. 16.
    D.F. Tejedor, G. Tellado, Chem. Soc. Rev. 36, 484–491 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Nefzi, J.M. Ostresh, R.A. Houghten, Chem. Rev. 97, 449–472 (1997)CrossRefGoogle Scholar
  18. 18.
    L.A. Thompson, Curr. Opin. Chem. Biol. 4, 324–337 (2000)CrossRefGoogle Scholar
  19. 19.
    A. Dömling, Curr. Opin. Chem. Biol. 6, 306–313 (2002)CrossRefGoogle Scholar
  20. 20.
    L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem. 28, 517–520 (1993)CrossRefGoogle Scholar
  21. 21.
    F.M. Uckun, C. Mao, A.O. Vassilev, H. Huang, S.T. Jan, Bioorg. Med. Chem. Lett. 10, 541–545 (2000)CrossRefGoogle Scholar
  22. 22.
    R. Gonzalez, N. Martin, C. Seoane, J.L. Marco, A. Albert, F.H. Cano, Tetrahedron Lett. 33, 3809–3812 (1992)Google Scholar
  23. 23.
    D. Armesto, W.M. Horspool, N. Martin, A. Ramos, C. Seaone, J. Org. Chem. 54, 3069–3072 (1989)CrossRefGoogle Scholar
  24. 24.
    S. Asghari, M. Ahmadipour, Acta. Chem. Slov. 57, 953–956 (2010)Google Scholar
  25. 25.
    M.B. Miya, Y.J. Prakash Raob, G.L.D. Krupadanam, Heterocycl. Lett. 2, 214–217 (2012)Google Scholar
  26. 26.
    S. Paul, P. Bhattacharyya, A.R. Das, Tetrahedron Lett. 52, 4636–4641 (2011)CrossRefGoogle Scholar
  27. 27.
    L.M. Wang, N. Jiao, J. Qiu, J.J. Yu, J.Q. Liu, F.L. Guo, Y. Liu, Tetrahedron 66, 339–343 (2010)CrossRefGoogle Scholar
  28. 28.
    H.J. Wang, J. Lu, Z.H. Zhang, Monatsh. Chem. 141, 1107–1112 (2010)CrossRefGoogle Scholar
  29. 29.
    M. Saeedi, M.M. Heravi, Y.S. Beheshtiha, H.A. Oskooie, Tetrahedron 66, 5345–5348 (2010)CrossRefGoogle Scholar
  30. 30.
    U.R. Pratap, D.V. Jawale, P.D. Netankar, R.A. Mane, Tetrahedron Lett. 52, 5817–5819 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Samadi, D. Silva, M. Chioua, L. Infantes, E. Soriano, J. Marco-Contelles, Mol. Divers. 19, 103–122 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Peng, G. Song, Catal. Commun. 8, 111–114 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Asghari, R. Baharfar, M. Alimi, M. Ahmadipour, M. Mohseni, Monatsh. Chem. 145, 1337–1342 (2014)CrossRefGoogle Scholar
  34. 34.
    T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Lojkowski, K.J. Kurzydlowski, Appl. Surf. Sci. 253, 204–208 (2006)CrossRefGoogle Scholar
  35. 35.
    R. Pielaszek, J. Appl. Crystallogr. 1, 43–50 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Nano and Biotechnology Research GroupUniversity of MazandaranBabolsarIran

Personalised recommendations