Research on Chemical Intermediates

, Volume 42, Issue 2, pp 1349–1362 | Cite as

Equilibrium, kinetic, and thermodynamic studies on biosorption of Cd(II) from aqueous solution by biochar

  • Mambo Moyo
  • Sikwila Thokozani Lindiwe
  • Edith Sebata
  • Benias Chomunorwa Nyamunda
  • Upenyu Guyo


The present investigation describes the use of biochar derived from an agricultural waste: the maize cob for the biosorption of Cd(II) ion. The biochar was characterized using scanning electron microscopy, surface area analysis, and Fourier transform infra-red spectroscopy. Batch experiments were performed to investigate the effects of parameters such as pH (2.0–8.0), dosage (0.2–1.2 g), contact time (5–300 min), initial metal concentration (10–100 mg L−1), and temperature (20–50 °C). Kinetic data were properly fitted with the pseudo-second-order model, with the q e (cal) value (17.21 mg g−1) closer to the q e (exp) value (18.82 mg g−1). The adsorption data conforms best to the Langmuir isotherm as revealed by the lower non-linear Chi square (χ 2) value of 0.15 and a higher correlation value of 0.98 when compared to the Freundlich with a high χ 2 value of 2.65 and lower correlation value of 0.96. The maximum adsorption capacity for the biochar was 33.0 mg g−1. The thermodynamic parameters ΔG 0, ΔS 0 and ΔH 0 confirmed that the biosorption was feasible, spontaneous, and endothermic. The results obtained suggest that using a low-cost biochar biosorbent for removing trace metals in contaminated water treatment plants may have great ecological and environmental significance.


Biosorption Biochar Cd(II) Equilibrium Kinetics Thermodynamics 



The authors are grateful for the Department of Chemical Technology, Midlands State University, Gweru, Zimbabwe, for providing facilities.


  1. 1.
    T.G. Kazi, N. Jalbani, N. Kazi, M.K. Jamali, M.B. Arain, H.I. Afridi, A. Kandhro, Z. Pirzado, Ren. Fail. 30(7), 737–745 (2008)CrossRefGoogle Scholar
  2. 2.
    E. Kalkan, H. Nadaroglu, N. Dikbaş, E. Taşgin, N. Çelebi, Pol. J. Environ. Stud. 22(2), 417–429 (2013)Google Scholar
  3. 3.
    R.A. Anayurt, A. Sari, M. Tuzen, Chem. Eng. J. 151, 255–261 (2009)CrossRefGoogle Scholar
  4. 4.
    B. Volesky, Biosorption of Heavy Metals (CRC Press, USA, 1990), p. 14Google Scholar
  5. 5.
    M.S. Al-Masri, Y. Amin, B. Al-Akel, T. Al-Naama, Appl. Biochem. Biotechnol. 160, 976–987 (2010)CrossRefGoogle Scholar
  6. 6.
    P.S. Kumar, S. Ramalingam, V. Sathyaselvabala, S. Dinesh Kirupha, S. Sivanesan, Desalination 266, 63–71 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Moyo, G. Nyamhere, E. Sebata, U. Guyo, Desalin. Water Treat. 1–11 (2014). doi:  10.1080/19443994.2014.968217
  8. 8.
    T.A. Saleh, V.K. Gupta, Environ. Sci. Pollut. Res. 19, 1224–1228 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Daraei, A. Mittal, J. Mittal, H. Kamali, Desalin. Water Treat. 52(7–9), 1307–1315 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Chun, G.Y. Sheng, C.T. Chiou, B.S. Xing, Environ. Sci. Technol. 38(17), 4649–4655 (2004)CrossRefGoogle Scholar
  11. 11.
    B.L. Chen, Z.M. Chen, Chemosphere 76, 127–133 (2009)CrossRefGoogle Scholar
  12. 12.
    Z.G. Liu, F.S. Zhang, J. Hazard. Mater. 167, 933–939 (2009)CrossRefGoogle Scholar
  13. 13.
    X. Han, C. Liang, T. Li, K. Wang, H. Huang, X. Yang, Biomed. Biotechnol. 14(7), 640–649 (2013)Google Scholar
  14. 14.
    J. Meng, X. Feng, Z. Dai, X. Liu, J. Wu, J. Xu, Environ. Sci. Pollut. Res. 21, 7035–7046 (2014)CrossRefGoogle Scholar
  15. 15.
    X.Y. Xu, X.D. Cao, L. Zhao, H.L. Wang, H.R. Yu, B. Gao, Environ. Sci. Pollut. Res. 20, 358–368 (2013)CrossRefGoogle Scholar
  16. 16.
    X.D. Cao, L.N. Ma, B. Gao, W. Harris, Environ. Sci. Technol. 43, 3285–3291 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Uchimiya, I.M. Lima, K.T. Klasson, S.C. Chang, L.H. Wartelle, J.E. Rodger, J. Agric. Food Chem. 58, 5538–5544 (2010)CrossRefGoogle Scholar
  18. 18.
    M.X. Guo, G.N. Qiu, W.P. Song, Waste Manag. 30, 308–315 (2010)CrossRefGoogle Scholar
  19. 19.
    L.C. Bornemann, R.S. Kookana, G. Welp, Chemosphere 67(5), 1033–1042 (2007)CrossRefGoogle Scholar
  20. 20.
    D. Mohan, C.U. Pittman, M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gomez-Serrano, H. Gong, J. Colloid Interface Sci. 310, 57–73 (2007)CrossRefGoogle Scholar
  21. 21.
    B.L. Chen, D.D. Zhou, L.Z. Zhu, Environ. Sci. Technol. 42(14), 5137–5143 (2008)CrossRefGoogle Scholar
  22. 22.
    P. Regmi, G.L.J. Moscoso, S. Kumar, X. Cao, J. Mao, G. Schafran, J. Environ. Manag. 109, 61–69 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Li, Q. Liu, L. Guo, Y. Zhang, Z. Lou, Y. Wang, G. Qian, Bioresour. Technol. 141, 83–88 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Periasamy, C. Namasivayam, Chemosphere 32(4), 769–789 (1996)Google Scholar
  25. 25.
    K.S. Thangamani, M. Sathishkumar, Y. Sameena, N. Vennilamanii, K. Kadirvelu, S. Pattabi, S.E. Yun, Bioresour. Technol. 98, 1265–1269 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Rajeshwarisivaraj, P. Sivakumar, V. Senthilkumar, Bioresour. Technol. 80, 233–235 (2001)CrossRefGoogle Scholar
  27. 27.
    M. Moyo, U. Guyo, G. Mawenyiyo, N.P. Zinyama, B.C. Nyamunda, J. Ind. Eng. Chem., xxx, xxx–xxx, in press. (2015) doi: 10.1016/j.jiec.2014.12.026
  28. 28.
    S. Prapagdee, S. Piyatiratitivorakul, A. Petsom, Environ. Asia 7(2), 60–69 (2014)Google Scholar
  29. 29.
    D. Kołodyńska, R. Wnętrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapiński, Z. Hubicki, Chem. Eng. J. 197, 295–305 (2012)CrossRefGoogle Scholar
  30. 30.
    Y. Yang, Z. Wei, X. Zhang, X. Chen, D. Yue, Q. Yin, L. Xiao, L. Yang, Bioresour. Technol. 171, 227–232 (2014)CrossRefGoogle Scholar
  31. 31.
    U. Guyo, J. Mhonyera, M. Moyo, Process Saf. Environ. Prot. 93, 192–200 (2015)CrossRefGoogle Scholar
  32. 32.
    A.K. Sheku, M. Moyo, C.M. Zvinowanda, O.J. Okonkwo, Desalin. Water Treat. 1–9 (2015). doi:  10.1080/19443994.2015.1004116
  33. 33.
    P.R. Sheha, J. Colloid Interface Sci. 310, 18–26 (2007)CrossRefGoogle Scholar
  34. 34.
    S.R. Shukla, R.S. Pai, Bioresour. Technol. 96, 1430–1438 (2005)CrossRefGoogle Scholar
  35. 35.
    I. Langmuir, J. Am. Chem. Soc. 38(2), 2221–2295 (1916)CrossRefGoogle Scholar
  36. 36.
    H.M.F. Freundlich, J. Phys. Chem. 57, 384–470 (1906)Google Scholar
  37. 37.
    B. Zhu, Z. Xiu, N. Liu, H. Bi, C. Lv, Oil Shale 29(3), 268–278 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Yakkala, M.R. Yu, H. Roh, J.K. Yang, Y.Y. Chang, Desalin. Water Treat. 51, 7732–7745 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical TechnologyMidlands State UniversitySenga, GweruZimbabwe

Personalised recommendations