Research on Chemical Intermediates

, Volume 42, Issue 2, pp 1139–1163 | Cite as

Synthesis, molecular docking and biological evaluation of new thiazolopyrimidine carboxylates as potential antidiabetic and antibacterial agents

  • Iram Batool
  • Aamer Saeed
  • Irfan Zia Qureshi
  • Saima Kalsoom
  • Ayesha Razzaq


A series of new thiazolopyrimidine analogues were conveniently synthesized by one-pot multicomponent condensation reaction of ethyl acetoacetate, 2-aminothiazole and benzaldehyde substituted with different electron-donating and electron-withdrawing groups, in order to find some more potent antidiabetic and antibacterial drugs. The structures of the synthesized compounds were assigned based on elemental analyses and spectral data. An in vitro effect on total serum concentration of glucose, cholesterol and triglycerides was evaluated in adult male BALB/c mice, compared to two standard drugs “alloxan” and “glibenclamide,” and good results were observed with the presence of –Cl and –Br groups at the para position of the phenyl ring. The antibacterial activities were tested against five bacterial strains, Micrococcus luteus, Salmonella typhimurium, Bacillus subtilis, Bordetella bronchiseptica and Escherichia coli. Most of the compounds showed good to excellent bacterial zone inhibition compared to the reference drug “kanamycin.” An in silico molecular docking was also performed on synthesized compounds to support the experimental findings, which were in good agreement with computational results. The current study is expected to provide useful insights into the design of antidiabetic and antibacterial drugs, and understanding the mechanism by which such drugs interact with RNA and diabetes targets and exert their biochemical action.


Thiazolopyrimidine Antidiabetic MOE docking 



Cardiovascular diseases


Comprising coronary heart


Type 2 diabetes mellitus


Myocardial infarction



I.B. gratefully acknowledges a research scholarship from HEC Islamabad under the HEC Indigenous Ph.D. Scholarship 5000 Scheme.


  1. 1.
    M.K. Ali, K.M. Venkat, N. Tandon, Diabetes & coronary heart disease: current perspectives. Ind. J. Med. Res. 132, 584–597 (2010)Google Scholar
  2. 2.
    I.E.I.S. Hassan, H.Z. Viola, M.E.l.S Abdallah, A.E.l.B. Dina, Studies on the effects of bacterial diseases on skin and gill structure of Clarias gariepinus in Dakahlia Provinence Egypt. Ann. Biol. Res. 1(4), 106–118 (2010)Google Scholar
  3. 3.
    S.L. Croft, S. Sundar, A.H. Fairlamb, Drug resistance in leishmaniasis. Clin. Microbiol. Rev. 19, 111–126 (2006)CrossRefGoogle Scholar
  4. 4.
    C.W. Muir, A.R. Kennedy, J.M. Redmond, A.J.B. Watson, Synthesis of functionalised 4H-quinolizin-4-ones via tandem Horner–Wadsworth–Emmons olefination/cyclisation. Org. Biomol. Chem. 11, 3337–3340 (2013)CrossRefGoogle Scholar
  5. 5.
    N.H. Karam, J.H. Tomma, A.H. Al-Dujaili, Synthesis and characterization of new derivatives of thiazole with liquid crystalline properties. Chem. Mater. Res. 3(9), 162–171 (2013)Google Scholar
  6. 6.
    N.C. Desai, V.V. Joshi, K.M. Rajpara, H.V. Vaghani, H.M. Satodiya, Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity. J. Fluor. Chem. 142, 67–78 (2012)CrossRefGoogle Scholar
  7. 7.
    O.A.M. Fathalla, M.M. Anwar, M.E. Haiba, S.M. Nofal, Synthesis of novel tetrahydronaphthalen-2-yl heterocycles for analgesic, anti-inflammatory and antipyretic evaluation. Acta Pol. Pharm. 66, 259–270 (2009)Google Scholar
  8. 8.
    H.N. Karade, B.N. Acharya, M. Sathe, M.P. Kaushik, Design, synthesis and antimalarial evaluation of thiazole derived amino acids. Med. Chem. Res. 17, 19–29 (2008)CrossRefGoogle Scholar
  9. 9.
    E. Brzezinska, G. Koska, A structure-activity relationship study of compounds with antihistamine activity. Biomed. Chromatogr. 20, 1004–1016 (2006)CrossRefGoogle Scholar
  10. 10.
    J.S. Barradas, M.I. Errea, N.B. D’Accorso, C.S. Sepulveda, E.B. Damonte, Imidazo[2,1-b]thiazole carbohydrate derivatives: synthesis and antiviral activity against Junin virus, agent of Argentine hemorrhagic fever. Eur. J. Med. Chem. 46, 259–264 (2011)CrossRefGoogle Scholar
  11. 11.
    R.A. Tapia, Y. Prieto, F. Pautet, N. Walchshofer, H. Fillion, B. Fenet, M.E. Sarciron, Synthesis and antiprotozoal evaluation of benzothiazolopyrroloquinoxalinones, analogues of kuanoniamine A. Bioorg. Med. Chem. 11, 3407–3412 (2003)CrossRefGoogle Scholar
  12. 12.
    C.H. Oh, H.W. Cho, D. Baek, J.H. Cho, Synthesis and antibacterial activity of beta-methyl-2-(5-substituted thiazolo pyrrolidin-3-ylthio)carbapenem derivatives. Eur. J. Med. Chem. 37, 743–754 (2002)CrossRefGoogle Scholar
  13. 13.
    S.K. Bharti, G. Nath, R. Tilak, S.K. Singh, Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur. J. Med. Chem. 45, 651–660 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Jaish, S.K. Srivastava, Synthesis and antimicrobial activity of some new N-methyl-piperazinylthiadiazoles and their azetidinones. J. Sci. Ind. Res. 60, 331–335 (2001)Google Scholar
  15. 15.
    U.P. Singh, H.R. Bhat, P. Gahtori, Antifungal activity, SAR and physicochemical correlation of some thiazole-1,3,5-triazine derivatives. J. Med. Mycol. 22(2), 134–141 (2012)CrossRefGoogle Scholar
  16. 16.
    G.V.S. Kumar, Y. Rajendraprasad, B.P. Mallikarjuna, S.M. Chandrashekar, C. Kistayya, Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4 oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 45, 2063–2074 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Marin, N. Valls, F.J. Berenguer, M.T. Alonso, A.M. Roman, M.M. Mercedes, J. Elguero, Synthesis and anthelmintic activity of carbamates derived from imidazo[2,1-b][1, 3, 4]thiadiazole and imidazo[2,1-b]thiazole. Farmaco (Societa Chimica Italiana) 47(1), 63–75 (1992)Google Scholar
  18. 18.
    A. Andreani, M. Rambaldi, A. Leoni, A. Locatelli, R. Bossa, M. Chiericozzi, I. Galatulas, G. Salvatore, Synthesis and cardiotonic activity of imidazo[2, l-b]thiazoles bearing a lactam ring. Eur. J. Med. Chem. 31(5), 383–387 (1996)CrossRefGoogle Scholar
  19. 19.
    T.El-S. Ali, Synthesis and fungicidal activity of some new 4H-chromen-4-ones containing some 1,3-thiazole, 1,3-thiazine, 1,2,4-triazole and 1,2,4-triazine moieties. Phosphorus Sulfur Silicon Relat. Elem. 182(8), 1717–1726 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Honjo, G. Engelhardt, Effect of 2-amino-4,5,6,7-tetrahydro-5-propyl-thiazole(5,4-c)pyridine, an antihypertensive and sedative substance, on the noradrenaline storage in the heart of guinea pigs. Arzneimittelforschung 20(6), 845–850 (1970)Google Scholar
  21. 21.
    A. Geronikaki, Theophilidis, synthesis of 2-(aminoacetylamino)thiazole derivatives and comparison of their local anaesthetic activity by the method of action potential. Eur. J. Med. Chem. 27(7), 709–716 (1992)CrossRefGoogle Scholar
  22. 22.
    A. Hu, Z. Qin, Y. J. Pingb, Synthesis, characterization and bactericidal activity of (E)-N-benzylidene-4-tert-butyl-5-(1,2,4-triazol-1-yl) thiazol-2-amines. Chin. J. Org. Chem. 30, 923–927 (2010)Google Scholar
  23. 23.
    T. Giridhar, R.B. Reddy, B. Prasanna, M.G.V.P. Chandra, Aminothiazoles: Part 1—syntheses and pharmacological evaluation of 4-[isobutylphenyl]-2-substitutedaminothiazoles. Indian J. Chem. 40B, 1279–1284 (2001)Google Scholar
  24. 24.
    M. Sobhi, G.K.D. Khalil, A convenient ultrasound-promoted synthesis of some new thiazole derivatives bearing a coumarin nucleus and their cytotoxic activity. Molecules 17, 9335–9347 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Anna, A. Dmytro, L. Roman, Thiopyrano[2,3-d]thiazole derivatives as potential anticancer agents. Sci. Pharm. 8(3), 509–529 (2012)Google Scholar
  26. 26.
    A.A. Kiryanov, P. Sampson, A.J. Seed, Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: applications for liquid crystal synthesis. J. Org. Chem. 66, 7925–7929 (2001)CrossRefGoogle Scholar
  27. 27.
    D. Vastag, S. Apostolov, M. Hadistevic, M. Sekulic, The possibility of copper corrosion protection in acidic media using a thiazole derivative. Mater. Technol. 47(3), 329–333 (2013)Google Scholar
  28. 28.
    C. Pifl, L. Pichler, W. Kobinger, O. Hornykiewicz, The dopamine autoreceptor agonist, B-HT 920, preferentially reduces brain dopamine release in vivo: biochemical indices of brain dopamine, noradrenaline and serotonin in ventriculocisternal perfusates in the cat. Eur. J. Pharm. 153(1), 33–44 (1988)CrossRefGoogle Scholar
  29. 29.
    C.S. Schneider, J. Mierau, Dopamine autoreceptor agonists: resolution and pharmacological activity of 2,6-diaminotetrahydrobenzothiazole and an aminothiazole analog of apomorphine. J. Med. Chem. 30, 494–498 (1987)CrossRefGoogle Scholar
  30. 30.
    J.M. Clark, S.J. Olsen, D.S. Weinberg, M. Dalvi, R.R. Whitney, D.P. Bonner, R.B. Sykes, In vivo evaluation of tigemonam, a novel oral monobactam. Antimicrob. Agents Chemother. 31(2), 226–229 (1987)CrossRefGoogle Scholar
  31. 31.
    J.C. Eriks, H. Vandergoot, G.J. Sterk, H. Timmerman, Histamine H2-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure–activity relationships of substituted 4- and 5-(2-aminoethyl)thiazoles. J. Med. Chem. 35(17), 3239–3246 (1992)CrossRefGoogle Scholar
  32. 32.
    C.E. Voogd, J.J. Van der Stel, H.W. Verharen, The capacity of some nitro and amino heterocyclic sulfur compounds to induce base-pair substitutions. Mutat. Res. 118(3), 153–165 (1983)CrossRefGoogle Scholar
  33. 33.
    J.C. Greenaway, A.G. Fantel, M.R. Juchau, On the capacity of nitroheterocyclic compounds to elicit an unusual axial asymmetry in cultured rat embryos. Toxicol. Appl. Pharmacol. 82(2), 307–315 (1986)CrossRefGoogle Scholar
  34. 34.
    S. Maddila, P. Lavanya, B. Sreekanth, V.Chunduri Jonnalagadda, Synthesis and antimicrobial studies of novel 2-benzylidene-phenylureido-thiazolopyrimidine derivatives. Chemija 23(2), 124–130 (2012)Google Scholar
  35. 35.
    Y. Guangfu, L. Huayin, Y. Xiufeng, Y. Huazheng, Design, syntheses and biological activity of novel CoMFA of sulfonylureas and triazolopyrimidine-2-sulfonamides ALS inhibitors. Sci. China (Ser. B) 42(6), 656–662 (1999) Google Scholar
  36. 36.
    A. Abdel-Aziem, M.S. El-Gendy, A.O. Abdelhamid, Synthesis and antimicrobial activities of pyrido[2,3-d]pyrimidine, pyridotriazolopyrimidine, triazolopyrimidine, and pyrido [2,3-d:6,5d′] dipyrimidine derivatives. Eur. J. Chem. 3(4), 455–460 (2012)CrossRefGoogle Scholar
  37. 37.
    M.M. Youssef, M.A. Amin, Microwave assisted synthesis of some new thiazolopyrimidine, thiazolodipyrimidine and thiazolopyrimidothiazolopyrimidine derivatives with potential antioxidant and antimicrobial activity. Molecules 17, 9652–9667 (2012)CrossRefGoogle Scholar
  38. 38.
    Y. Kotaiah, N.H. Krishna, K.N. Raju, C.V. Rao, S.B. Jonnalagadda, S. Maddila, Synthesis and biological evaluation of novel isopropyl 2-thiazolopyrimidine-6-carboxylate derivatives. J. Korean Chem. Soc. 56(1), 68–73 (2012)Google Scholar
  39. 39.
    X. Deng, S. Kokkonda, F.E.I. Mazouni, J. White, J.N. Burrows, W. Kaminsky, S.A. Charman, D. Matthews, P.K. Rathod, M.A. Phillips, Fluorine modulates species selectivity in the triazolopyrimidine class of plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J. Med. Chem. 57, 5381–5394 (2014)CrossRefGoogle Scholar
  40. 40.
    S. Maddila, G.L.V. Damu, E.O. Oseghe, O.A. Abafe, C.V. Rao, P. Lavanya, Synthesis and biological studies of novel biphenyl-3,5-dihydro-2H thiazolopyrimidines derivatives. J. Korean Chem. Soc. 56(3), 334–340 (2012)Google Scholar
  41. 41.
    I.Z. Qureshi, Q. Abbas, Modulation of testicular and whole blood trace element concentrations in conjunction with testosterone release following kisspeptin administration in male rabbits (Oryctolagus cuniculus). Biol. Trace Elem. Res. 154(2), 210–216 (2013)Google Scholar
  42. 42.
    M. Zaheer, A. Shah, Z. Akhter, R. Qureshi, B. Mirza, M. Tauseef, M. Bolte, Synthesis, characterization, electrochemistry and evaluation of biological activities of some ferrocenyl Schiff bases. Appl. Organomet. Chem. 25(1), 61–69 (2011)CrossRefGoogle Scholar
  43. 43.
    S.G. Abdel Moty, M.A. Hussein, S.A.A.A. Aziz, M.A. Abou-Salim, Design and synthesis of some substituted thiazolo[3,2-a]pyrimidine derivatives of potential biological activities. Saudi Pharm. J. 22, 1–13 (2014). doi: 10.1016/j.jsps.2013.12.016
  44. 44.
    E.X. Esposito, B. Eselli, K. Ken, D.M. Jeffry, Docking of sulfonamides to carbonic anhydrase II and IV. J. Mol. Graph. Model. 18(3), 283–289 (2000)CrossRefGoogle Scholar
  45. 45.
    G.M. Morris, D.S. Goodsell, R. Huey, A.J. Olson, Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 10, 293–304 (1996)CrossRefGoogle Scholar
  46. 46.
    M.K. Abdel-Hamid, A.A. Abdel-Hafez, N.A. EI-Koussi, N.M. Mahfouz, A. Innocenti, C.T. Supuran, Design, synthesis, and docking studies of new 1,3,4-thiadiazole-2-thione derivatives with carbonic anhydrase inhibitory activity. Bioorg. Med. Chem. 15(22), 6975–6984 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Saeed, P.A. Mahesar, S. Zaib, M.S. Khan, A. Matin, M. Shahid, J. Iqbal, Synthesis, cytotoxicity and molecular modeling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases. Eur. J. Med. Chem. 78, 43–53 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Zaib, A. Saeed, K. Stolte, U. Flörke, M. Shahid, J. Iqbal, New aminobenzenesulfona mide-thiourea conjugates: synthesis and carbonic anhydrase inhibition and docking studies. Eur. J. Med. Chem. 78, 140–150 (2014)CrossRefGoogle Scholar
  49. 49.
    P. Fouzia, Q. Rumana, S. Afzal, A. Safeer, L.A. Farzana, K. Saima, M. Sumera, Electrochemical, spectroscopic and molecular docking studies of anticancer organogermalactones. Int. Res. J. Pharm. 1(1), 1–8 (2011)Google Scholar
  50. 50.
    D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Animal ScienceQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations