Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 2, pp 499–509 | Cite as

Ionic liquid supported nanoporous silica (SBA-IL) as an efficient and heterogeneous catalyst in the domino synthesis of polyhydroquinoline derivatives

  • Ghodsi Mohammadi Ziarani
  • Leila Seyedakbari
  • Shima Asadi
  • Alireza Badiei
  • Marzieeh Yadavi
Article

Abstract

A simple, efficient, and environmentally benign protocol for the synthesis of polyhydroquinoline derivatives was developed using a bio-compatible, heterogeneous, and recoverable mesoporous ionic liquid supported nanoporous silica as a nano-catalyst. The polyhydroquinoline derivatives were obtained by the four-component reaction of aldehyde, Meldrum’s acid, dimedone, and ammonium acetate in excellent yields .

Graphical Abstract

Keywords

Four component reaction SBA-IL Polyhydroquinoline derivatives Nanoporous Heterogeneous catalyst 

Notes

Acknowledgments

We gratefully acknowledge financial support from the Research Council of Alzahra University and the University of Tehran.

References

  1. 1.
    S. Stolte, M. Matzke, J. Arning, A. Boschen, W.-R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem. 9, 1170 (2007). doi: 10.1039/B711119C CrossRefGoogle Scholar
  2. 2.
    J. Ranke, S. Stolte, R. Störmann, J. Arning, B. Jastorff, Chem. Rev. 107, 2183 (2007). doi: 10.1021/cr050942s CrossRefGoogle Scholar
  3. 3.
    V.I. Pârvulescu, C. Hardacre, Chem. Rev. 107, 2615 (2007). doi: 10.1021/cr050948h CrossRefGoogle Scholar
  4. 4.
    A.M. da Costa Lopes, K.G. João, D.F. Rubik, E. Bogel-Łukasik, L.C. Duarte, J. Andreaus, R. Bogel-Łukasik, Bioresour. Technol. 142, 198 (2013). doi: 10.1016/j.biortech.2013.05.032 CrossRefGoogle Scholar
  5. 5.
    M. Valkenberg, W. Hölderich, Green Chem. 4, 88 (2002). doi: 10.1039/b107946h CrossRefGoogle Scholar
  6. 6.
    C.P. Mehnert, Chem. A Eur. J. 11, 50 (2005). doi: 10.1002/chem.200400683 CrossRefGoogle Scholar
  7. 7.
    D.J. Macquarrie, Chem. Commun. (1997). doi: 10.1039/A700261K Google Scholar
  8. 8.
    C. Paun, J. Barklie, P. Goodrich, H.Q.N. Gunaratne, A. McKeown, V.I. Pârvulescu, C. Hardacre, J. Mol. Catal. A: Chem. 269, 64 (2007). doi: 10.1016/j.molcata.2007.01.002 CrossRefGoogle Scholar
  9. 9.
    R. Janis, P. Silver, D. Triggle, Adv. Drug Res. 16, 309 (1987)Google Scholar
  10. 10.
    R.A. Janis, D.J. Triggle, J. Med. Chem. 26, 775 (1983). doi: 10.1021/jm00360a001 CrossRefGoogle Scholar
  11. 11.
    F. Bossert, W. Vater, Med. Res. Rev. 9, 291 (1989). doi: 10.1002/med.2610090304 CrossRefGoogle Scholar
  12. 12.
    T. Godfraid, R. Miller, M. Wibo, Pharmocol. Rev. 38, 321 (1986)Google Scholar
  13. 13.
    A. Sausins, G. Duburs, Heterocycles 27, 291 (1988). doi: 10.3987/REV-87-371 CrossRefGoogle Scholar
  14. 14.
    P. Mager, R. Coburn, A. Solo, D. Triggle, H. Rothe, Drug Des. Discov. 8, 273 (1992)Google Scholar
  15. 15.
    R. Mannhold, B. Jablonka, W. Voigt, K. Schönafinger, E. Schraven, Eur. J. Med. Chem. 27, 229 (1992). doi: 10.1016/0223-5234(92)90006-m CrossRefGoogle Scholar
  16. 16.
    G. Mohammadi Ziarani, S. Asadi, A. Badiei, S. Mousavi, P. Gholamzadeh, Res. Chem. Intermed. 41, 637 (2015). doi: 10.1007/s11164-013-1217-x CrossRefGoogle Scholar
  17. 17.
    P. Gholamzadeh, G. Mohammadi Ziarani, A. Badiei, Z. Bahrami, Eur. J. Org. Chem. 3, 279 (2012). doi: 10.5155/eurjchem.3.3.279-282.630 CrossRefGoogle Scholar
  18. 18.
    G. Mohammadi Ziarani, A. Badiei, A. Abbasi, Z. Farahani, Chin. J. Chem. 27, 1537 (2009). doi: 10.1002/cjoc.200990259 CrossRefGoogle Scholar
  19. 19.
    A. Badiei, H. Goldooz, G. Mohammadi Ziarani, Appl. Surf. Sci. 257, 4912 (2011). doi: 10.1016/j.apsusc.2010.12.146 CrossRefGoogle Scholar
  20. 20.
    S. Hamoudi, A. El-Nemr, K. Belkacemi, J. Colloid Interface Sci. 343, 615 (2010). doi: 10.1016/j.jcis.2009.11.070 CrossRefGoogle Scholar
  21. 21.
    T. Sasaki, C. Zhong, M. Tada, Y. Iwasawa, Chem. Commun. (2005). doi: 10.1039/B500349K Google Scholar
  22. 22.
    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998). doi: 10.1021/ja974025i CrossRefGoogle Scholar
  23. 23.
    K. Sing, D. Everett, R. Haul, L. Moscou, R. Peirotti, J. Rouquerol, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  24. 24.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies (Wiley, London, 2004)Google Scholar
  25. 25.
    X.S. Fan, Y.Z. Li, X.Y. Zhang, G.R. Qu, J.J. Wang, X.Y. Hu, Heteroat. Chem. 17, 382 (2006). doi: 10.1002/hc.20221 CrossRefGoogle Scholar
  26. 26.
    S. Tu, Q. Wei, H. Ma, D. Shi, Y. Gao, G. Cui, Synth. Commun. 31, 2657 (2001). doi: 10.1081/scc-100105393 CrossRefGoogle Scholar
  27. 27.
    M. Suárez, E. Ochoa, Y. Verdecia, B. Pita, L. Morán, N. Martín, M. Quinteiro, C. Seoane, J. Soto, H. Novoa, N. Blaton, O.M. Peters, Tetrahedron 55, 875 (1999). doi: 10.1016/s0040-4020(98)01078-3 CrossRefGoogle Scholar
  28. 28.
    J. Svetlik, V. Hanus, J. Bella, Synth. Commun. 23, 631 (1993). doi: 10.1080/00397919308009821 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ghodsi Mohammadi Ziarani
    • 1
  • Leila Seyedakbari
    • 1
  • Shima Asadi
    • 1
  • Alireza Badiei
    • 2
  • Marzieeh Yadavi
    • 2
  1. 1.Department of ChemistryAlzahra UniversityVanak Square, TehranIran
  2. 2.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations