Research on Chemical Intermediates

, Volume 41, Issue 12, pp 10125–10135 | Cite as

Intramolecular cyclization of N-phenylanthranilic acid catalyzed by MCM-41 with different pore diameters

  • Shangyou Xiao
  • Guang Xu
  • Gang Chen
  • Xiaojing Mu
  • Zhitao Chen
  • Jun Zhu
  • Yi He


Micro-mesoporous sieves MCM-41 with different pore diameters were synthesized under microwave irradiation, characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, N2 adsorption–desorption and temperature-programmed desorption of NH3 (NH3-TPD). Intramolecular cyclization of N-Phenylanthranilic acid to acridone catalyzed by MCM-41 with different pore diameters was investigated. The results indicate that the yields increased significantly with the decrease of pore diameter of MCM-41. Furthermore, the yield of acridone under microwave irradiation was higher than that under conventional heating.


MCM-41 Pore diameter Intramolecular cyclization Acridone Microwave irradiation 



This work is supported by the Natural Science Foundation Project of CQ CSTC (No. 2011BB5090).


  1. 1.
    K.F. Jensen, AIChE J. 45, 2051 (1999)CrossRefGoogle Scholar
  2. 2.
    H. Liu, G. Lu, Y. Guo, Y. Wang, Y. Guo, J. Colloid Interface Sci. 346, 486 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Dyer, Introduction to zeolite molecular sieves, 3rd edn. (Elsevier, New York, 2007)Google Scholar
  4. 4.
    S. Xiao, H. Yang, Q. Li, J. Qiu, Z. Xia, Chin. J. Org. Chem. 31, 690 (2011)Google Scholar
  5. 5.
    Q.R. Fang, G.S. Zhu, M.H. Xin, M. Xue, Chem. J. Chin. Univ. 25, 1425 (2004)Google Scholar
  6. 6.
    S.K. Jana, T. Kugita, S. Namba, Appl. Catal. A 266, 245 (2004)CrossRefGoogle Scholar
  7. 7.
    H.L. Zhao, J. Hu, J. Wang, L.H. Zhou, H.L. Liu, Acta Phys-Chim. Sin. 23, 801 (2007)CrossRefGoogle Scholar
  8. 8.
    S.A. Idris, C.M. Davidson, C. McManamon, M.A. Morris, P. Anderson, L.T. Gibson, J. Hazard Mater. 185, 898 (2011)CrossRefGoogle Scholar
  9. 9.
    K.A. Northcott, K. Miyakawa, S. Oshima, Y. Komatsu, J.M. Perera, G.W. Stevens, Chem. Eng. J. 157, 25 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Selvaraj, A. Pandurangan, K. Seshadri, P. Sinha, V. Krishnasamy, K. Lal, J. Mol. Catal. A: Chem. 192, 153 (2003)CrossRefGoogle Scholar
  11. 11.
    Q. Tang, H. Xu, Y. Zheng, J. Wang, H. Li, J. Zhang, Appl. Catal. A 413, 36 (2012)CrossRefGoogle Scholar
  12. 12.
    J.A. Wang, X.L. Zhou, L.F. Chen, L.E. Noreña, G.X. Yu, C.L. Li, J. Mol. Catal. A: Chem. 299, 68 (2009)CrossRefGoogle Scholar
  13. 13.
    Q.H. Zuo, B. Li, L.M. Zhang, Y.H. Wang, Y.H. Liu, J. Zhang, Y. Chen, L.F. Guo, J. Solid State Chem. 183, 1715 (2010)CrossRefGoogle Scholar
  14. 14.
    G.J. Kim, S.H. Kim, Catal. Lett. 57, 139 (1999)CrossRefGoogle Scholar
  15. 15.
    G.J. Kim, J.H. Shin, Tetrahedron Lett. 40, 6827 (1999)CrossRefGoogle Scholar
  16. 16.
    R.I. Kureshy, I. Ahmad, N.H. Khan, S.H. Abdi, S. Singh, P.H. Pandia, R.V. Jasra, J. Catal. 235, 28 (2005)CrossRefGoogle Scholar
  17. 17.
    K. Bachari, R. Chebout, R.M. Guerroudj, M. Lamouchi, J. Porous Mater. 19, 615 (2012)CrossRefGoogle Scholar
  18. 18.
    G.H. Meng, S.L. Wang, N. Bai, New Chem. Mater. 34, 42 (2006)Google Scholar
  19. 19.
    M. Iwamoto, Y. Tanaka, N. Sawamura, S. Namba, J. Am. Chem. Soc. 125, 13032 (2003)CrossRefGoogle Scholar
  20. 20.
    B. Zhang, X. Li, B. Li, C. Gao, Y. Jiang, Expert Opin. Ther. Pat. 24, 647 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Galdino-Pitta, M. Pitta, M. Lima, S. Galdino, I. Pitta, Mini-Rev. Med. Chem. 13, 1256 (2013)CrossRefGoogle Scholar
  22. 22.
    X.L. Lang, L. Li, Y. Chen, Q. Sun, Q. Wu, F. Liu, C. Tan, H. Liu, C.M. Gao, Y.Y. Jiang, Bioorg. Med. Chem. 21, 4170 (2013)CrossRefGoogle Scholar
  23. 23.
    J.L. Zhou, Y.J. Lu, Z.S. Huang, L.Q. Gu, Acta Sci. Nat. Univ. Sunyatseni 43, 126 (2004)Google Scholar
  24. 24.
    C.H. Chen, Y.W. Lin, R. Kakadiya, A. Kumar, Y.T. Chen, T.C. Lee, T.L. Su, Tetrahedron 67, 5883 (2011)CrossRefGoogle Scholar
  25. 25.
    V. Meynen, P. Cool, E.F. Vansant, Micropor. Mesopor. Mater. 125, 170 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Xi, Z.P. Bažant, H.M. Jennings, Adv. Cem. Bas. Mater. 1, 248 (1994)CrossRefGoogle Scholar
  27. 27.
    J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson, E. Sheppard, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  28. 28.
    Y. Kong, X. Xu, Y. Wu, R. Zhang, J. Wang, Chin. J. Catal. 29, 385 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Landau, S. Varkey, M. Herskowitz, O. Regev, S. Pevzner, T. Sen, Z. Luz, Micropor. Mesopor. Mater. 33, 149–163 (1999)CrossRefGoogle Scholar
  30. 30.
    L.N. Sun, H.J. Zhang, C.Y. Peng, J.B. Yu, Q.G. Meng, L.S. Fu, J. Phys. Chem. B 110, 7249 (2006)CrossRefGoogle Scholar
  31. 31.
    I. Díaz, C. Márquez-Alvarez, F. Mohino, J. Pérez-Pariente, E. Sastre, J Catal 193, 283 (2000)CrossRefGoogle Scholar
  32. 32.
    C. J. Liu, S. G. Li, W. Q. Peng, Chem. Commun. 65–66 (1997)Google Scholar
  33. 33.
    M.F. Qu, G.S. Zhu, S.Y. Huang, S.G. Li, Chem. J. Chinese Universities. 12, 2195 (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Shangyou Xiao
    • 1
  • Guang Xu
    • 1
  • Gang Chen
    • 1
  • Xiaojing Mu
    • 1
  • Zhitao Chen
    • 1
  • Jun Zhu
    • 1
  • Yi He
    • 1
  1. 1.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations