Research on Chemical Intermediates

, Volume 41, Issue 12, pp 9319–9332 | Cite as

Optimization of Cs content in Co–Mn–Al mixed oxide as catalyst for N2O decomposition

  • Ž. Chromčáková
  • L. Obalová
  • P. Kustrowski
  • M. Drozdek
  • K. Karásková
  • K. Jirátová
  • F. Kovanda


A series of Co–Mn–Al mixed oxide catalysts with different Cs contents (0.5–4.6 wt%) was prepared by calcination of Co–Mn–Al hydrotalcite (Co:Mn:Al = 4:1:1), followed by impregnation by cesium salt (CsNO3, Cs2CO3) using the pore filling method. Chemical analysis, N2 sorption, temperature programmed reduction (TPR)-H2, temperature programmed desorption (TPD)-CO2 and TPD-NH3 and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. All prepared catalysts were tested for N2O catalytic decomposition in inert gas and in the presence of oxygen, water vapor and nitric oxide. The influence of Cs salts used for catalyst preparation and cesium content on catalyst activity were studied. A significant increase in catalytic activity with increasing amount of cesium promoter was observed without respect to the Cs precursor. The strong promotional effect of cesium is electronic in nature and is discussed in term of changes in surface composition and catalyst reducibility.


Nitrous oxide Catalytic decomposition Mixed oxide catalysts Cesium promoter Layered double hydroxides 



This work was supported by the Czech Science Foundation (Project No. 14-13750S) and by the Ministry of Education, Youth and Sports of the Czech Republic in the “National Feasibility Program I,” project LO1208 “Theoretical Aspects of Energetic Treatment of Waste and Environment Protection against Negative Impacts” and by the specific research projects SP2014/48, SP2014/62 and SP2015/125.


  1. 1.
    L. Obalová, K. Jirátová, F. Kovanda, K. Pacultová, Z. Lacný, Z. Mikulová, Appl. Catal. B 60, 289–297 (2005)CrossRefGoogle Scholar
  2. 2.
    B.M. Abu-Zied, Chin. J. Catal. 32, 264–272 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Wu, W. Li, L. Guo, Y. Pan, X. Xu, J. Fuel Chem. Technol. 39, 550–555 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Pan, M. Feng, X. Cui, X. Xu, J. Fuel Chem. Technol. 40, 601–607 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Obalová, K. Karásková, K. Jirátová, F. Kovanda, Appl. Catal. B Environ. 90, 132–140 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Obalová, G. Maniak, K. Karásková, F. Kovanda, A. Kotarba, Catal. Commun. 12, 1055–1058 (2011)CrossRefGoogle Scholar
  7. 7.
    K. Karásková, L. Obalová, K. Jirátová, F. Kovanda, Chem. Eng. J. 160, 480–487 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Karásková, L. Obalová, F. Kovanda, Catal. Today 176, 208–211 (2011)CrossRefGoogle Scholar
  9. 9.
    N. Pasha, N. Lingaiah, N. Seshu Babu, P. Siva Sankar Reddy, P.S. Sai Prasad, Catal. Commun. 10, 132–136 (2008)CrossRefGoogle Scholar
  10. 10.
    P. Stelmachowski, G. Maniak, A. Kotarba, Z. Sojka, Catal. Commun. 10, 1062–1065 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Zasada, P. Stelmachowski, G. Maniak, J.-F. Paul, A. Kotarba, Z. Sojka, Catal. Lett. 127, 126–131 (2009)CrossRefGoogle Scholar
  12. 12.
    N. Pasha, N. Lingaiah, P. Siva Sankar Reddy, P.S. Sai Prasad, Catal. Lett. 118, 64–68 (2007)CrossRefGoogle Scholar
  13. 13.
    X. Xu, X. Xu, G. Zhang, X. Niu, J. Fuel Chem. Technol. 37, 595–600 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Beyer, J. Emmerich, K. Chatziapostolou, K. Köhler, Appl. Catal. A: Gen 391, 411–416 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Parres-Esclapez, M.J. Illián-Gómez, C. Salinas-Martínez De Lecea, A. Bueno-López, Appl. Catal. B Environ. 96, 370–378 (2010)CrossRefGoogle Scholar
  16. 16.
    F. Kovanda, T. Rojka, J. Dobešová, V. Machovič, P. Bezdička, L. Obalová, K. Jirátová, T. Grygar, J. Solid State Chem. 179, 812–823 (2006)CrossRefGoogle Scholar
  17. 17.
    K.S.W. Sing, R.T. Williams, Adsorpt. Sci. Technol. 22, 773–782 (2004)CrossRefGoogle Scholar
  18. 18.
    L. Matějová, O. Šolcová, P. Schneider, Microporous Mesoporous Mater. 107, 227–232 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Lecloux, J.P. Pirard, J. Colloid Interf. Sci. 70, 265–281 (1979)CrossRefGoogle Scholar
  20. 20.
    L. Obalová, K. Karásková, A. Wach, P. Kustrowski, K. Mamulová-Kutláková, S. Michalik, K. Jirátová, Appl. Catal. A 462–463, 227–235 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Obalová, K. Jirátová, K. Karásková, Ž. Chromčáková, Catal. Today 191, 116–120 (2012)CrossRefGoogle Scholar
  22. 22.
    Z. Dou, M. Feng, X. Xu, J. Fuel Chem. Technol. 41, 1234–1240 (2013)CrossRefGoogle Scholar
  23. 23.
    B.M. Abu-Zied, S.A. Soliman, Catal. Lett. 132, 299–310 (2009)CrossRefGoogle Scholar
  24. 24.
    G. Maniak, P. Stelmachowski, F. Zasada, W. Piskorz, A. Kotarba, Z. Sojka, Catal. Today 176, 369–372 (2011)CrossRefGoogle Scholar
  25. 25.
    P. Stelmachowski, G. Maniak, J. Kaczmarczyk, F. Zasada, W. Piskorz, A. Kotarba, Z. Sojka, Appl. Catal. B Environ. 146, 105–111 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ž. Chromčáková
    • 1
    • 2
  • L. Obalová
    • 1
    • 2
  • P. Kustrowski
    • 3
  • M. Drozdek
    • 3
  • K. Karásková
    • 2
  • K. Jirátová
    • 4
  • F. Kovanda
    • 5
  1. 1.Institute of Environmetal TechnologyVŠB - Technical University of OstravaOstravaCzech Republic
  2. 2.Faculty of Metallurgy and Materials EngineeringVŠB - Technical University of OstravaOstravaCzech Republic
  3. 3.Jagiellonian UniversityKrakowPoland
  4. 4.Institute of Chemical Process Fundamentals of the ASCRPragueCzech Republic
  5. 5.University of Chemistry and Technology PraguePragueCzech Republic

Personalised recommendations